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ABSTRACT
Bicyclic peptides are emerging as next generation therapeutics by combining the affinity and specificity of antibodies with the 
synthetic convenience of small molecules. Phage-encoded libraries of bicyclic peptides enable the discovery of high-affinity mol-
ecules against virtually any protein target. The generation of bicyclic peptides that advanced into clinical development involves 
the reaction of three cysteines in a peptide to a C3-symmetric alkylating agent. In phage display, this chemical modification 
transforms a pool of conformationally flexible peptides into a library of structurally unique protein mimetics that are able to bind 
traditionally challenging protein surfaces like those with limited structural definition. In recent years, a new class of bicyclic 
peptides has emerged using a single atom—bismuth—in place of C3-symmetric organic scaffolds, thus expanding into an unex-
plored chemical space at the intersection of inorganic chemistry and biology. This mini-review aims to reflect on the discovery, 
evolution and potential future applications of bismuth bicycle molecules.

1   |   Introduction

Bicyclic peptides are emerging as next-generation therapeutics, 
occupying a chemical space between antibodies and small mol-
ecules (Figure  1) [3–7]. Like antibodies, bicyclic peptides are 
known for their extraordinary affinity and specificity [3]. Yet 
akin to small molecules, bicyclic peptides are accessible through 
chemical synthesis allowing for a compound's alteration on an 
atomic level—to control pharmacokinetic parameters such as 
tissue penetration and clearance [8–11]. Unlike antibodies, bi-
cyclic peptides have shown no signs of immunogenicity to date, 
which avoids potential adverse effects associated with Fc-related 
pharmacological effects (Figure 1).

A variety of double-looped peptidomimetics could be con-
sidered bicyclic peptides [7, 12–15], but the topology which 
arguably defined the term in its recent incarnation is charac-
terised by a linear peptide that is anchored at three joints to a 
central scaffold, forming a bicyclic product (Figures  1 and 2) 
[6, 12]. A prominent example involves the reaction of three cys-
teines in a native peptide to alkylating agents such as 1,3,5-tris 

(bromomethyl)benzene (TBMB) (Figure 2A) [16, 17]. This chem-
ical modification can improve both binding affinity and proteo-
lytic stability in comparison to its linear congener [16, 18, 19].

Winter and co-workers, at the MRC Laboratory for Molecular 
Biology (Cambridge, UK), pioneered phage-encoded combi-
natorial chemical libraries of Bicycle molecules by developing 
engineered bacteriophages, which displayed semi-randomised 
peptide sequences on their surface [16]. These N-terminal exten-
sions of the bacteriophage's pIII protein comprise three cyste-
ines separated by multiple randomised residues. The subsequent 
modification of the three thiol groups with TBMB restricts the 
conformational flexibility and transforms short random-coiled 
peptides into a library of structurally unique protein mimetics. 
Affinity based selections of these combinatorial libraries with 
a diversity of ~1014 against a given biological target enables the 
discovery of peptidomimetics with extraordinary affinity and 
specificity [16].

Bicycle Therapeutics, a pharmaceutical company founded on 
the work from Winter and Heinis [16], has been showcasing the 
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power of this technology for 15 years. Within its late-stage port-
folio, Bicycle Therapeutics has a number of next-generation ther-
apeutics including a Bicycle Drug Conjugate (BDC) targeting 
Nectin-4 (zelenectide pevedotin), in phase II/III clinical trials 
[10, 11, 20–25]. These achievements were made possible through 
the continuous evolution of their phage-display platform, which 
has introduced increased structural diversity through expansion 
of library formats and exploration of a range of C3-symmetric 
organic scaffolds, including TATA, TBAB or TATB (Figure 2B) 
[26–32].

In recent years, a new evolution of scaffolds emerged using a sin-
gle atom—bismuth—in place of C3-symmetric organic scaffolds 
like TBMB [33]. This unconventional concept, thus expands into 
an unexplored chemical space of metal-constrained Bicycle mol-
ecules which may hold unique opportunities for research and 
development. This mini-review aims to reflect on the discovery, 
evolution and potential future applications of bismuth Bicycle 
molecules.

2   |   Bioinorganic Chemistry of Bismuth

Bismuth, the 83rd element of the periodic table, was long believed 
to be the heaviest stable atom before its naturally occurring iso-
tope (bismuth-209) was shown to undergo alpha decay—with a 
half-life (1.9 ± 0.2 × 1019 years) that exceeds the age of our uni-
verse by ~ 9 orders of magnitude [34, 35]. The predominant oxi-
dation states are III and V, while Bi(III) is the most common and 
stable form [36]. The coordination number of Bi(III) complexes 

can vary from 3 to 10 resulting in a range of geometries [36, 37]. 
Stable complexes are known with organic ligands comprising 
carboxylates, amines and most favourably thiols [36, 38–40].

Bismuth's thiophilic nature makes it an attractive metal for 
selective modifications of cysteines [39]. Informative studies 
examined interactions between Bi3+ and glutathione (GSH), 
a naturally occurring tripeptide that possesses two carboxylic 
acids, a primary amine and a thiol [41]. Despite the presence of 
these alternate metal binding moieties, 13C, 1H NMR measure-
ments showed exclusive binding of the thiolate to bismuth with 
a stoichiometry of 3:1 (Bi(GSH)3) from pH 2 to pH 10. The kinet-
ics of the Bi-S bond showed pH dependency, with slow exchange 
rates at pH 4 (3 s−1) and faster exchange rates at physiological 
pH 7.4 (1500 s−1). Considering a reported stability constant of log 
K ~ 30, this suggests that Bi (GSH)3 complexes are, at physiolog-
ical pH, thermodynamically stable while kinetically labile [41].

A subsequent study examined Bi3+ binding to an N-terminal do-
main of a cysteine-rich protein [42]. The extracted decapeptide 
1 (MPGCPCPGCG-NH2) comprised three cysteines separated 
by either one or two residues. NMR measurements indicated ex-
clusive binding of the three thiolates to bismuth. The resulting 
tridentate bismuth complex was stable from pH 2 to pH 10 in 
agreement with earlier work on Bi (GSH)3 and even in the pres-
ence of a competing nona-peptide containing two vicinal cyste-
ines (Ac-ACCHDHKKH-NH2). This increased stability is likely 
due to the chelate effect, which describes the greater stability of 
metal complexes with higher denticity (number of donor groups 
in a given ligand that bind to a metal centre) [43].

FIGURE 1    |    Comparison of different therapeutics modalities. (A) Surface map of an IgG antibody shown in light grey (accession code: 1IGT). 
Cartoon structure of a β-hairpin within the light chain comprising 15 amino acids is highlighted in purple to allow for a relative comparison 
of the size of an antibody to a Bicycle molecule. Each of the Bicycle molecules I-IV comprise no more than 15 amino acids (excluding the scaf-
fold). (B) Cartoon structures of four Bicycle molecules cyclised with TATA (1,3,5-triacryloylhexahydro-1,3,5-triazine). (I) Bicycle molecule targeting 
CD137 (accession code: 6Y8K), (II) Bicycle molecule targeting E. coli PBP3 (accession code: 8RTZ), (III) Bicycle molecule targeting ACE2 (accession 
code: 8BN1), (IV) Bicycle molecule targeting EphA2 (accession code: 6RW2). Ribbon representation of amino acid backbone shown in purple, C3-
symmetric organic scaffold (TATA) shown in grey, heteroatoms highlighted in red (oxygen), blue (nitrogen) and yellow (sulfur). (C) 3D structures of 
Bosutinib (top) and Apixaban (bottom). Heteroatoms highlighted as in (B) with the addition of green (chloride). (D) Table comparing selected prop-
erties of antibodies, Bicycle molecules and small molecules.a,b representative values [1, 2]—certain examples may deviate in their valuesc Main route 
of administration. NB structures not drawn to scale.
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3   |   Bismuth Bicycle Molecules

Encouraged by these and other examples  [39, 44–48], Voss 
et al. set out to examine bismuth(III) as an alternative linker to 
generate a new class of Bicycle molecules (Figure 5) [33]. The 
reaction scheme proceeds in analogous fashion to those of con-
ventional scaffolds like TBMB, which link three cysteines in 
a peptide (Figure 2). However, with an atomic radius of 1.5 Å 

[49], bismuth(III) represents the smallest and most constraint 
scaffold explored to generate Bicycle molecules (Figure  3 and 
Table 1).

In fact, for this work we ran computational simulations of 
Bi3+, TBMB, TATA, TBAB and TATB bound to three cysteines 
to compare the size and flexibility of the resulting conjugates. 
This allowed us to measure the distance between the C-alpha 
atom (of each of the three cysteines) and the centre of each 
scaffold across the simulated landscape of conformations. 
Our data suggests that bismuth(III) forms the most constraint 
complexes with a mean distance of 3.9 Å and the narrowest 

FIGURE 2    |    Schematic illustration comparing the synthetic scheme of Bicycle molecules generated with C3-symmetric organic scaffolds and 
Bi3+. (A) Schematic reaction scheme for the synthesis of Bicycle molecules using TBMB. (B) Alternative C3-symmetric organic scaffolds for cysteine 
alkylation: 1,3,5-triacryloylhexahydro-1,3,5-triazine (TATA), N,N',N"-benzene-1,3,5-triyltris(2-bromoacetamide) (TBAB), 1,1',1"-(1,3,5-triazinane-
1,3,5-triyl)tris(2-bromoethan-1-one) (TATB). (C) Schematic reaction scheme for the synthesis of Bicycle molecules using Bi3+. Suitable salts for the 
synthesis of bismuth Bicycle molecules include BiBr3 (soluble in organic solvents including dimethyl sulfoxide or acetonitrile) and bismuth tripotas-
sium dicitrate (soluble in water).

FIGURE 3    |    Distributions of the distances between the Cα of N-
acetyl cysteine methyl ester and the centre of selected scaffolds sampled 
by the simulations.

TABLE 1    |    Mean distances between the Cα of N-acetyl cysteine 
methyl ester and the centre of selected scaffolds.

Scaffold
Mean distance (Å)a 

[standard deviation]
Interquartile 

rangeb

Bismuth 3.9 [+/− 0.2] 0.2

TBMB 4.7 [+/− 0.6] 1.0

TATA 6.5 [+/− 0.9] 1.3

TBAB 5.1 [+/− 0.4] 0.5

TATB 5.2 [+/− 0.7] 0.8
aAverage distance between the Cα of N-acetyl cysteine methyl ester and the 
centre of a scaffold across the landscape of simulated conformations.
bDifference between the 75th and 25th percentiles of the data.
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distribution. At the other end of the spectrum is TATA, with 
a mean distance of 6.5 Å. The values for TBMB, TBAB, and 
TATB lie in between bismuth and TATA with 4.7, 5.1 and 5.2 
Å, respectively (Figure 3 and Table 1).

A series of peptides following the general formula (CXnCXmC) 
with Xn and Xm being 3–8 amino acids was exposed to 
bismuth(III) at physiological pH and in presence of the 

reducing agent tris(2-carboxyethyl)phosphine (TCEP). Liquid 
chromatography-high resolution mass spectrometry data in-
dicated in all cases the formation of a single product consis-
tent with the mass of a bismuth Bicycle molecule. Importantly, 
the presence of sidechain moieties which might compete for 
bismuth binding, such as contained in aspartate, serine or 
histidine, also formed a single product. NMR measurements 
([13C,1H]-HSQC) of an isolated bismuth Bicycle molecule (2) 
confirmed the presence of a single species and showed exclu-
sive binding of the three cysteines (Table 2) [33].

Competition studies in the presence of GSH, at physiologi-
cal pH, showed that bismuth Bicycle molecules tolerate up 
to 100 equivalents, although continued exposure (to 100 eq. 
GSH) over the course of two days resulted in partial dissoci-
ation [50], which can be attributed to the chelate effect and 
the above-mentioned kinetic lability. The hexadentate che-
lator EDTA on the other hand, can displace the tridentate 
peptide ligand more rapidly. But a 2-fold excess of EDTA did 
not promote complete bismuth dissociation from its peptide 
ligand [33]. The stability of bismuth peptide complexes can be 
further improved by converting the acyclic peptide chain into 
a monocyclic peptide precursor (by head-to-tail cyclisation) 
prior to bismuth binding which protects 4 largely against a 5-
fold excess of EDTA [51]. Another study suggests the use of 

TABLE 2    |    Selected sequences of bismuth binding peptides

Cpd. Sequence Ref.

1 H-MPGCPCPGCG-NH2 42

2 Ac-CKRKGCGKRKC-NH2 33

3 RhB-CKRKGCGKRKC-NH2
a 50

4 LACKRKGCAPYDCPGb 51

5 H-AUPSDYUKRKGUG-NH2 52

6 Ac-AUPHPQUEAAAU-NH2 52
aRhB, Rhodamine B piperazine succinic acid.
bCompound 4 has a macrocyclic backbone (head-to-tail cyclised through amide 
bond formation between its N-terminal α-amine and C-terminal carboxylic 
acid).

FIGURE 4    |    Chemical structures of selected bismuth Bicycle molecules 2 and its fluorescently labelled analogue 3. Compound 2 and 3 are se-
quence analogues which differ in their N-terminal extension. Compound 3 carries a rhodamine B derivative highlighted in grey.

FIGURE 5    |    Schematic illustration showing the conversion of linear peptides comprising three cysteines to its corresponding bismuth Bicycle 
molecule under biocompatible conditions. Linear peptides comprising three cysteines react in the presence of the reducing agent TCEP with Bi3+ 
salts under biocompatible conditions instantaneously to the corresponding bismuth Bicycle molecule. Bismuth bicyclisation improves binding affini-
ty, increases proteolytic stability and enhances cellular uptake of cell-penetrating peptides (CPPs). Bismuth Bicycle molecules can be quantified from 
biological matrices directly using inductively coupled plasma-mass spectrometry (ICP-MS), bypassing the need for an additional reporter system 
such as fluorescent labels. Another technique that leverages the bismuth core directly as a reported system is X-ray fluorescence microscopy (XFM), 
which not only enables quantification from biological matrices but allows localisation of bismuth Bicycle molecules at subcellular level. Bi3+ salts are 
compatible with phage display, thus enabling access to a chemical space at the intersection of inorganic chemistry and biology.
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selenocysteine in place of the three cysteines. The resulting 
selenocysteine bismuth Bicycle molecule 5 appears to tolerate 
100 eq. EDTA (a hexadentate chelator) while 6 is reported to 
withstand 25 eq. of an octadentate analogue (DTPA) following 
1h incubation at room temperature [52]. An explanation for 
these observations may be found in the principles of Hard and 
Soft Acids and Bases (HSAB), which describe the favourable 
interaction of soft Lewis acids like Bi(III) [53] with soft Lewis 
bases such as thiolates (as opposed to hard Lewis bases like 
carboxylates or alkylamines) [54, 55]. The HSAB principles 
also predict the greater strength of the bismuth-selenium bond 
in which selenolates act as even softer Lewis bases, that trump 
the greater denticity of EDTA or DTPA [52, 54, 55].

The introduction of structural constraint through peptide cycli-
sation can favour a conformation that complements the target 
binding site [13, 56]. This preorganisation can result in a re-
duced entropic penalty upon binding, which translates into im-
proved binding affinity [16, 19]. To examine whether bismuth 
binding has a comparable effect on a peptide's biological activ-
ity, a screening campaign against proteases from Zika [57] and 
West Nile viruses [58] was conducted. A series of 15 rationally 
designed protease inhibitors bearing either one or two substrate 
recognition motifs were screened in  situ against both targets. 
These efforts yielded compound 2 which inhibited both prote-
ases with higher potency than its linear congener—in the case 
of the West Nile virus by more than two orders of magnitude 
(Figures 4 and 5) [33].

Another effect that is often associated with increased confor-
mational rigidity is elevated proteolytic stability [3, 13, 59]. 
Peptides with restricted conformational flexibility often have 
elongated half-lives. Explanations for that may be found in the 
inadequate conformation of constrained peptides relative to 
the protease binding pocket, which tend to bind linear sections 
of a peptide and the higher energy barrier necessary to adopt 
a transition state during proteolytic digestion. Proteolytic 
stability studies of bismuth Bicycle molecules and their lin-
ear analogues (without bismuth) demonstrated that bismuth 
Bicycles were 6 to 19 times more resistant to proteolytic di-
gestion (depending on the peptide's sequence and protease in 
question) (Figure 5) [33].

4   |   Cell-Penetrating Bismuth Bicycle Molecules

In addition to improved biological activity and proteolytic sta-
bility, conformational constraint can also enhance the cellu-
lar uptake of cell-penetrating peptides (CPPs) [60–66]. CPPs 
are short peptide sequences known to undergo cellular inter-
nalisation [60]. While mechanistic details remain the subject 
of ongoing research, a significant proportion of CPPs are be-
lieved to undergo receptor-mediated endocytosis [60, 67–70]. 
The majority of CPPs are either amphipathic or polycationic, 
such as the first reported examples penetratin [67] and Tat49-57 
[71, 72]. The resemblance of compound 2 to polycationic CPPs 
prompted follow-up studies which examined its properties 
using cellular systems [50]. A fluorescently labelled ana-
logue 3 (Figure 4) was incubated with three different cancer 
cell lines and in all cases showed time- and concentration-
dependent cellular uptake as demonstrated by live-cell 

confocal microscopy and fluorescence-activated cell sorting 
(FACS). Cellular uptake of 3 was observed at concentrations 
as low as 10 nM. Compound 3 also showed a 10-fold higher 
(concentration-dependent) cellular uptake than known CPPs 
such as Tat49–57 and R8 (Figure 5). Mechanistic studies suggest 
an energy-dependent uptake that is sensitive to rottlerin inhi-
bition, rottlerin being an inhibitor of micropinocytosis [50].

Despite the efficient uptake rates of investigated cell-penetrating 
bismuth Bicycle molecules, a challenge in their clinical applica-
tion, as is the case for many CPPs [60, 73], remains their entrap-
ment within endo-lysosomal compartments. A separate study 
investigated modifications to the CPP sequence that could pro-
mote the release of bismuth Bicycle molecules from these sub-
cellular compartments into the cytosol [74]. These modifications 
included the introduction of non-canonical amino acids and in-
version of stereo centres which led to a two-fold improvement in 
a functional assay in comparison to their benchmark sequence 
CPP12 [74, 75].

Measuring a peptide's cellular uptake using techniques such 
as confocal microscopy or FACS necessitates the addition of a 
fluorescent dye to a compound of interest [60]. This modifica-
tion ultimately alters a peptide's properties in ways which are 
difficult to predict and limits the comparability between differ-
ent dyes and data sets (e.g., compare size and physicochemical 
properties of 2 and 3 in Figure 4) [60]. Unlike bicyclic peptides 
formed though cysteine alkylation, bismuth Bicycles carry a 
heavy metal core. This offers unique opportunities to leverage 
orthogonal quantification methods such as inductively coupled 
plasma-mass spectrometry (ICP-MS) and X-ray fluorescence mi-
croscopy (XFM).

ICP-MS can accurately quantify metals from a wide range of 
matrices, including biological samples [76, 77], enabling quan-
tification of labelled and unlabelled bismuth Bicycle molecules 
(Figure 4). A comparative screening of various bismuth Bicycle 
molecules with and without fluorescent labels showed that the 
label had generally a negative impact on cellular uptake of poly-
cationic CPPs [50].

XFM on the other hand, does not only allow the quantification of 
metals from biological matrices but also their subcellular local-
isation [78–81]. To this end, most modern applications of XFM 
rely on synchrotron radiation because of its tuneable and high 
spectral brightness source of X-rays [78]. In XFM each element 
yields a characteristic fluorescence spectrum which enables the 
quantification and localisation of a variety of metals from com-
plex matrices, simultaneously [78–81]. In a follow-up study XFM 
was leveraged alongside fluorescence microscopy to investigate 
cell-penetrating bismuth Bicycle molecules including 3 [82]. 
Three sets of compounds were prepared based on different CPP 
motifs which were labelled with a coumarin, naphthalimide or 
rhodamine dye. To enable tracking of both bismuth and the dye 
using XFM, an analogue of each dye was synthesised that car-
ried a bromine substitution. Bromine is like bismuth an XFM 
active element with negligible background signal in mammalian 
cells. Correlative multimodal optical and x-ray fluorescence im-
ages demonstrate co-localisation of bismuth, bromine and the 
fluorescent dye following cellular uptake and thus provide fur-
ther insights into the behaviour of this compound class [82].
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5   |   Phage-Encoded Bismuth Bicycle Molecules

Genetically encoded combinatorial libraries provide access to a 
vast spectrum of structurally unique peptides, allowing for the 
discovery of binders against a range of biological targets. Two 
independent studies examined in a proof-of-concept the use of 
Bi3+ salts as reagents to modify phage display libraries [83, 84]. 
The studies used two different phage constructs in which the 
semi-randomised peptide sequence was either an N-terminal 
extension of the pIII [83] or pVIII [84] protein. The different 
library formats used followed the general formula (CXnCXmC) 
with Xn and Xm being 3–5 randomised amino acids for engi-
neered pIII proteins (9 libraries in total) [83] or Xn and Xm being 
4 randomised amino acids for engineered pVIII proteins (1 li-
brary) [84]. Both studies concluded that Bi3+ salts are compatible 
with the phage display technology and enable access to geneti-
cally encoded bismuth Bicycle molecules. Binders were enriched 
against two different model proteins, namely maltose binding 
protein [83] and streptavidin [84]. Regardless of the moderate 
affinities, both studies reported exemplars that bound their re-
spective target with dissociation constants that were two orders 
of magnitude greater in the presence of bismuth than in its ab-
sence [83, 84]. Future work will have to show the ability of the 
technique to generate bismuth Bicycle molecules against clini-
cally relevant targets.

6   |   Potential Applications

In comparison to related pnictogens like arsenic or antimony, 
bismuth is remarkably well tolerated, allowing for its use in 
medical applications. Examples include bismuth tripotassium 
dicitrate (Gastrodenol) or the over-the-counter drug bismuth 
subsalicylate (Pepto-Bismol).

In response to the rise of antimicrobial resistance, metals have 
gained increasing attention [85]. Amongst the more promising 
metals is bismuth, which is also used to treat gastrointestinal 
infections of Helicobacter pylori [86, 87]. In addition to its clini-
cal use, pre-clinical studies have shown that bismuth can inhibit 
beta-lactamases [88] and sensitise multi-drug-resistant bacterial 
strains, highlighting potential applications as metalloantibi-
otic [89].

The emergence of precision guided medicine spurred a renewal 
of interest in the targeted radiopharmaceutical space [90]. 
Radiopharmaceuticals that gained approval in the last decade 
include Lutathera (EMA 2017, FDA 2018) [91] and Pluvicto 
(EMA and FDA 2022) [92] which both utilise peptidic ligands 
to bind to their cognate receptors within tumours. The road-
block in this rapidly growing research area is the availability 
of peptidic ligands against protein targets beyond the small 
number for which natural ligands are known (e.g., PSMA or 
Somatostatin-2 Receptor) [93–95]. Genetically encoded peptide 
libraries, such as phage-display, overcome these limitations 
and have proven suitable in identifying novel ligands even 
against targets that were previously deemed undruggable [8]. 
Ligands emerging from these screenings enable the selective 
delivery of a given payload to disease tissue while ensuring 
rapid clearance from circulation, thereby improving both safety 
and efficacy of the therapy. Targeted alpha therapy (TAT) holds 

promise in the treatment of cancer. In TAT, a ligand directs 
alpha emitting radionuclides to cancer cells to deliver localised 
radiation [96, 97]. Bismuth-213, a radioactive isotope with a 
half-life of ~46 min, decays through two different pathways to 
bismuth-209, emitting either way an alpha particle in the pro-
cess [98, 99]. Thus, replacing 209Bi for alpha-emitting 213Bi in 
bismuth Bicycle molecules may yield a new class of precision 
radiopharmaceuticals. The instant, selective and quantitative 
conversion of linear peptides into their corresponding bismuth 
Bicycle molecule is certainly a unique advantage that calls for 
further investigation.

7   |   Summary

In recent years, bismuth Bicycle molecules have emerged as a 
novel class of constraint peptides. Similarly to alkylating agents, 
bismuth(III) can link three thiols in peptides; however, unlike 
conventional reagents, bismuth Bicycle molecules form instan-
taneously at physiological pH, yield quantitative conversions 
and tolerate the reducing agent TCEP. This enables the facile 
synthesis of bismuth Bicycle molecules even from genetically-
encoded peptide libraries, such as phage display, which unlocks 
an unexplored chemical space of compounds with unique prop-
erties for a range of applications including infectious diseases 
and cancer (Figure 5).
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