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Abstract

Background: Violacein is a deep violet compound that is produced by a number of bacterial species. It is synthesized
from tryptophan by a pathway that involves the sequential action of 5 different enzymes (encoded by genes vioA to
vioE). Violacein has antibacterial, antiparasitic, and antiviral activities, and also has the potential of inducing apoptosis in
certain cancer cells.

Results: Here, we describe the construction of a series of plasmids harboring the complete or partial violacein
biosynthesis operon and their use to enable production of violacein and deoxyviolacein in E.coli. We performed
in vitro assays to determine the biological activity of these compounds against Plasmodium, Trypanosoma, and
mammalian cells. We found that, while deoxyviolacein has a lower activity against parasites than violacein, its
toxicity to mammalian cells is insignificant compared to that of violacein.

Conclusions: We constructed E. coli strains capable of producing biologically active violacein and related compounds,
and propose that deoxyviolacein might be a useful starting compound for the development of antiparasite drugs.

Keywords: Violacein, Deoxyviolacein, Plasmodium falciparum, Trypanosoma cruzi, Synthetic operon, Antiparasitic,
Escherichia coli

Background
Violacein is a violet indolocarbazole pigment that is pro-
duced by bacteria such as Chromobacterium violaceum,
which are commonly found in water and soil throughout
the world [1–6]. Violacein has antipyretic [7, 8], ulcer-
protective [8], antibacterial [9–11], antifungal [3, 12],
trypanocidal [13, 14], antileishmanial [15], antinematode
[16], and antiviral [17] activities. It also has the potential
of inducing apoptosis in certain cancer cells [2, 18]. Vio-
lacein kills wild-type and drug-resistant strains of the
malaria parasite, Plasmodium falciparum and is thera-
peutically against malaria in mice [19]. These character-
istics suggest that violacein has considerable research

potential and may represent a chemical scaffold for the
developemt of clinically useful drugs.
Commercially, violacein is usually isolated from Chro-

mobacterium [20–22] or Janthinobacterium [23, 24];
however, this process is costly and there are reports of
rare but deadly infections caused by these bacteria [25–
28]. Hence, there has been considerable interest in the
development of safe, and efficient routes to the biosyn-
thesis of this compound [1, 29–34].
The violacein biosynthetic pathway from L-tryptophan

(Fig. 1) requires the expression of five genes: vioA, vioB,
vioC, vioD, and vioE [35–39]. It should be noted that
VioC enzyme is involved in both the production of
deoxyviolacien from protodeoxyviolaceinic acid and in
the generation of violacein from protoviolaceinic acid.
Several studies have shown that transforming and ex-
pressing a complete metabolic pathway into a different
bacterial host may lead to improved production of viola-
cein [40–43]. For example, Rodrigues and co-workers
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[32–34] have successfully engineered Escherichia coli to
produce high yields of violacein and the side-product
deoxyviolacein. This was accomplished by cloning the
complete vioABCDE and the partial vioABCE operons (re-
spectively) from C. violaceum into pBADMycHisB, which
allows the induction of the operon by L-arabinose [32,
34]. These authors also metabolically engineered the host’s
tryptophan production to maximize the yield of violacein
and deoxyviolacein [32, 34, 42]. More recently Jones and
co-workers [44] and Xu and co-workers [45] utilized vio-
lacein biosynthesis as a model for metabolic pathway bal-
ancing and optimization. Employing different approaches,

they fine-tuned the expression of violacein-producing en-
zymes, leading to an improvement in the production of
the compound by up to 30-fold when compared to previ-
ously reported work.
We have generated a synthetic operon containing the

coding sequences of each of the five genes required for vio-
lacein biosynthesis, with a codon-usage optimized for E. coli
(http://parts.igem.org/Part:BBa_K274002). We also con-
structed strains lacking vioD, to promote the accumulation
of deoxyviolacein. A similar approach was employed by Ro-
drigues and co-workers for the production of high yields of
violacein and deoxyviolacein [32–34]. We produced and
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Fig. 1 Violacein biosynthetic pathway (a) and plasmid maps of the complete (b) and partial (c, d and e) operons for violacein biosynthesis
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purified violacein and deoxyviolacein, and characterized
their toxicity and antiplasmodial activity in wild-type and
drug-resistant Plasmodium falciparum strains; we also de-
termined their activity against Trypanosoma cruzi.

Methods
Bacterial strains and plasmids
We constructed plasmids expressing violacein and deoxy-
violacein by sub-cloning the synthetic violacein operon
(Part: BBa_K274002) designed by Shuna Gould for the
iGEM09_Cambridge project (http://parts.igem.org/Part:B-
Ba_K274002). The synthetic violacein operon is comprised
of the 5 coding sequences specifying violacein pathway en-
zymes (vioA, vioB, vioC, vioD and vioE), each preceded by
a ribosome-binding site. The operon was designed with a
BamHI site in the space between vioB and vioC open
reading-frames (ORFs), a BglII site between the vioC and
vioD ORFs, and a BclI site between the vioD and vioE
reading-frames. Since cleavage of the BamHI, BglII, and
BclI sites generate compatible cohesive ends, this facili-
tated the construction of three different operons:
vioABCE; vioABDE; vioABE. The synthetic operons are
flanked by EcoRI and PstI restriction endonuclease
sites, enabling the use of these two enzymes to readily
subclone the entire (vioABCDE) and partial operons
(vioABCE, vioABDE, vioABE) into the EcoRI and NsiI
sites of pBAT4 (Fig. 1).

Production and purification of violacein and deoxyviolacein
We transformed E. coli BL21(DE3) (New England Bio-
labs) cells with plasmids expressing the synthetic
vioABCDE (for production of both violacein and deoxy-
violaein) or vioABCE (for production of deoxyviolacein
alone) operons. The leaky expression from the T7 pro-
moter in these plasmids was enough to allow sufficient
synthesis of the enzymes in the violacein biosynthetic
pathway.
We picked individual colonies, inoculated 50 mL cul-

tures in 2× YT (16 g/L Tryptone, 10 g/L yeast extract,
5 g/L sodium chloride) with 100 mg/L ampicillin, and
incubated for 16 h at 37 °C. These pre-cultures were in-
oculated into 20 L of 2xYT supplemented with 100 mg/L
of ampicillin and 100 mg/L of L-tryptophan in a Sartor-
ius Biostat Cplus fermenter. Cultures were grown for 5 h
at 37 °C, with agitation (400 rpm) and air influx of 4 L/
min. The temperature was then reduced to 20 °C (to
avoid excessive growth and foaming overnight) and the
cultures were incubated for a further 16 h. Cells were
harvested by centrifugation. Violacein and deoxyviola-
cein were extracted by resuspending the bacterial pellets
in 500 mL of 90% v/v acetone. Cell suspensions in acet-
one were filtered to produce crude violacein and deoxy-
violacein extracts.

Violacein and deoxyviolacein purification
Deoxyviolacein
The acetone cell extract was evaporated to dryness. The
crude residue was suspended in acetone and dry-loaded
onto silica gel (SiO2). Deoxyviolacein was purified by
column chromatography on silica gel (SiO2), first wash-
ing with petroleum ether (boiling point = 40–60 °C) and
eluting with a 1:1 solution of ethyl acetate and petrol-
eum ether. Deoxyviolacein was obtained as a purple
solid and was analytically pure (100%). The identity and
purity of deoxyviolacein were confirmed by 1H NMR
(Additional file 1: Figure S1). We calculated the purity
by integrating related peaks and comparing the areas.
No other analysis was run because the data is consistent
with that from the literature [46]. The apparent purity of
deoxyviolacein allowed its quantitation and that of viola-
cein (see below). Minor contamination by inorganic
compounds cannot be excluded but these would need to
be soluble in acetone.

Violacein
The acetone cell extract was evaporated to dryness. The
crude residue was suspended in acetone with sonication
and dry-loaded onto silica gel (SiO2). Violacein was puri-
fied by column chromatography on silica gel (SiO2), first
washing with petroleum ether (boiling point = 40–60 °C)
and eluting with 4:6, 1:1, and 6:4 solutions of ethyl acet-
ate and petroleum ether (boiling point = 40–60 °C).
Violacein was obtained as a crude mixture with approxi-
mately 12% deoxyviolacein (estimated from 1H NMR).
The identity of violacein was confirmed by 1H NMR
(Additional file 1: Figure S1) and was consistent with the
literature [46].

Plasmodium falciparum drug sensitivity assays
We cultivated Plasmodium falciparum 3D7 and W2
strains in complete RPMI (RPMI 1640, Sigma, USA),
supplemented with 10% plasma (AB−) and 2% Haemato-
crit (O+). Plasmodium cultures were synchronized twice
with sorbitol, and drug sensitivity tests were performed
on cultures enriched for ring-stage parasites. The para-
sitemia of the cultures was adjusted to 1% and drug sen-
sitivity screens were performed in 96-well plates, with
the following drug concentrations: for violacein and
chloroquine [47] 8 concentrations of a 2× serial dilution,
starting with 5 μM were employed; for deoxyviolacein,
the same number of serial dilutions were tested with a
starting concentration of 50 μM. All experiments were
performed in triplicate and included solvent controls as
well as untreated erythrocytes. After 48 h of incubation
at 37 °C, cultures were labeled with SYBR® Green and
analyzed by flow cytometry. IC50s were calculated using
GraphPad Prism version 5.01.
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Trypanosoma cruzi drug sensitivity assays
In vitro drug sensitivity assays on Trypanosoma cruzi
were performed as described by Ferreira [48]. Briefly, we
performed the assays using T. cruzi strain Tulahuen
(parasites engineered to express E. coli β-galactosidase,
lacZ [49], that catalyzes a colorimetric reaction when
biologically active). Trypomastigotes were grown on
monolayers of human fibroblasts, and epimastigotes
were grown in liver infusion tryptone with 10% fetal
calf serum, penicillin and streptomycin (to prevent
contamination). Cultures assayed for β-galactosidase
activity were grown in RPMI 1640 medium without
phenol red plus 10% fetal calf serum, penicillin, and
streptomycin.
Drug-sensitivity assays were performed in 96-well tis-

sue culture plates (Becton Dickinson). Human fibro-
blasts were seeded at 2 × 103 per well in 80 μL volumes
(RPMI 1640 without phenol red) and incubated over-
night. The next day, β–galactosidase-expressing trypo-
mastigotes were added at 1 × 104 per well in 20 μL of
RPMI 1640 without phenol red. After 24 h, violacein or
deoxyviolacein (10 mM stocks in DMSO) were added to
the cultures in serial dilutions in 50 μL volumes (RPMI
1640 without phenol red). Each dilution was tested in
triplicate. After 72 h of incubation, the plates were
inspected under an inverted microscope to check the
growth of the controls and sterility. Then, 50 μL of the
substrate containing chlorophenol red-β-D-galactopyra-
noside (CPRG) and Nonidet P-40 (0.1% final concentra-
tion) was added to all wells. β–galactosidase activity led
to a change in the color of the medium from yellow to
red, a change that was quantified through measuring the
absorbance at 570 nm in an automated plate reader [48].
Wells containing violacein and deoxyviolacein (without
phenol red) were used to normalize for the purple color
of the compounds. Data were transferred into Sigma
Plot to determine IC50 values. The drug benzimidazole
was used as a positive control and untreated parasite
cultures were used as negative control for these assays.

Cytotoxicity of violacein and deoxyviolacein
The cytotoxicity of the compounds used in this work was
evaluated using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay. MTT is a yellow tetra-
zole compound that is reduced to a purple formazan in
the mitochondria of living cells. Hence, the proportion of
living eukaryotic cells in a given culture can be quantified
by monitoring its absorbance at 590 nm.
We cultured HepG2 (human hepatoma) and COS-7

(kidney from African Green Monkey) cell lines in the
presence of different concentrations of the test com-
pounds, to evaluate their cytotoxicity. We incubated 104

cells in 200 μL cultures (96-well plates) in 5% v/v CO2 at
37 °C, in RPMI with Gentamicin (40 mg/L), and 10% of

heat-inactivated fetal calf serum (FCS). The final concen-
trations of test compounds were: violacein (10 μM,
5 μM, 2.5 μM, 1.25 μM and 0.62 μM) and deoxyviola-
cein (200 μM, 100 μM, 50 μM, 25 μM and 12.5 μM).
After 48 of incubation, we added 15 μL of 5 mg/L

MTT and incubated for 4 h in 5% v/v CO2 at 37 °C. The
plate was then centrifuged at 1500 rpm for 5 min, the
supernatant discarded, the cells washed with PBS, and
resuspended in 50 μL of isopropanol. Wells containing
violacein and deoxyviolacein (without MTT) were used
to normalize for the purple color and precipitation of
the compounds.
We cultured HepG2 (human hepatoma) and CHO-745

(Chinese hamster ovary) cell lines in the presence of dif-
ferent concentrations of the test compounds, to evaluate
their morphology. We incubated 104 cells in 200 μL cul-
tures (96-well plates) in 5% v/v CO2 at 37 °C, in RPMI
with Gentamicin (40 mg/L), and 10% of heat-inactivated
fetal calf serum (FCS). The final concentrations of test
compounds were: violacein (0 μM, 0.8 μM, 4 μM, 20 μM
and 100 μM) and deoxyviolacein (0 μM, 0.8 μM, 4 μM,
20 μM and 100 μM).

Results
Activity of purified violacein and deoxyviolacein against
T. cruzi
We evaluated the biological activity of violacein and deox-
yviolacein produced in our recombinant E. coli strains ex-
pressing the complete or partial synthetic violacein
operon, and found that violacein could efficiently inhibit
the trypanosomatids, with an IC50 of 1.51 μM± 0.4,
whereas the IC50 for deoxyviolacein was above 50 uM. As
a comparison, the IC50 determined in the same experi-
ment for the anti T. cruzi drug benzimidazole (N-benzyl-
2-(2-nitro-1H- imidazol-1-yl)acetamide) was 3.07 μM
±0.6. The IC50 values of the compounds against the T.
cruzi Tulahuen strain in the in vitro assay represent the
means of at least three individual experiments.

Antiplasmodial activity of purified violacein and
deoxyviolacein
Initially, we tested higher concentrations (> 5 μM) of
violacein in a Plasmodium sensitivity test, and noted that
samples treated with 10 or 50 μM of violacein could not
be analyzed through flow cytometry as all erythrocytes
ruptured in the presence of those doses of the com-
pound. Violacein was active against both chloroquine-
sensitive and chloroquine-resistant Plasmodium strains
(IC50 ~ 0.4 μM against 3D7 and ~ 0.5 μM against W2
parasites). Deoxyviolacein, on the other hand, showed a
mild activity against Plasmodium strains when compared
with violacein (IC50 ~ 11 μM against 3D7 and ~ 14 μM
against W2 parasites). The chloroquine control curve
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performed in both strains showed IC50 values compar-
able with those described in the literature (Fig. 2).

Cytotoxicity of violacein and deoxyviolacein
When performing drug sensitivity assays on erythrocytes
infected with P.falciparum, we noticed that healthy and
infected erythrocytes ruptured when treated with 10 μM
or more of violacein. In contrast, erythrocytes treated
with 50 μM deoxyviolacein did not show any obvious
morphological changes compared to the untreated cells.
We evaluated the morphological changes in HepG2 and
CHO-745 cells upon exposure to violacein and deoxy-
violacein, but once more detected no morphological
changes to cells treated with 20 μM deoxyviolacein and
minor changes to cells treated with 100 μM deoxyviola-
cein (Additional file 2: Figures. S2 and S3).
We performed viability assays to investigate the tox-

icity of violacein and deoxyviolacein to COS-7 and
HepG2 cell lines. Our experiments confirmed the cytoxi-
city of violacein against both cell lines (IC50 of ~ 2.5 μM
against COS-7 and ~ 1.4 μM against HepG2), with a
stronger effect on the tumor cell line. In contrast, deoxy-
violacein showed low toxicity against mammalian cell
lines, as cells were able to grow well even in the pres-
ence of concentrations of deoxyviolacein 20 times higher
then its IC50 in Plasmodium strains (Fig. 3). We were

unable to test higher deoxyviolacein concentrations since
it precipitated under our experimental conditions.

Discussion
We have constructed E. coli strains producing either a
mixture of violacein or dexyviolacein alone, using enzymes
encoded by synthetic operons. The biological activity of
these compounds against Trypanosoma, Plasmodium and
mammalian cells was assessed. The synthesis of these pig-
ment compounds was easily monitored by their color and
it was possible to observe, for example, that pigment for-
mation was greatly enhanced by intense aeration.
We purified deoxyviolacein using the conditions de-

scribed in the Methods section, achieving close to 100%
purity in just a few purification steps. Violacein, how-
ever, was contaminated with approximately 12% deoxy-
violacein. Hence, in all experiments where we describe
the biological effects of violacein, we had some deoxy-
violacein as a contaminant. As the biological activity of
deoxyviolacein was consistently lower than that of viola-
cein, we inferred that this contamination would not
interfere with the interpretation of the results.
We performed in vitro assays to investigate the antiplas-

modial activity of violacein and deoxyviolacein, using both
3D7 (wild-type) and W2 (chloroquine-resistant) Plasmo-
dium falciparum strains. We found that the IC50 of viola-
cein was ca. 0.5 μM, whereas that of deoxyviolacein was

Fig. 2 Plasmodium falciparum growth inhibition assays. a IC50 3D7-
Violacein: 0.54 μM ±0.08; Deoxyviolacein: 11 μM ±0.1; Chloroquine:
18 nM ±0.1. b IC50 W2- Violacein: 0.42 μM ±0.14; Deoxyviolacein:
14.04 μM ±0.07; Chloroquine: 0.54 μM ±0.11

Fig. 3 Cytotoxicity of violacein and deoxyviolacein. MTT assay used
to investigate the cytotoxicity of violacein and deoxyviolacein to (a)
COS-7 and (b) HepG2 cells, indicated that deoxyviolacein shows no
measurable toxicity to mammalian cells, whereas the IC50 for
violacein is approximately 2.5 μM and 1.4 μM for COS-7 and HepG2
cells, respectively
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ca. 10 μM. The 3D7 and W2 strains were equally sensitive
to violacein and deoxyviolacein, whilst 3D7 was around 30
times more sensitive to chloroquine (IC50 ~ 20 nM) than
W2 (IC50 ~ 0.5uM). Hence, the mechanism conferring re-
sistance to chloroquine in W2 lines did not affect their
sensitivity to violacein or deoxyviolacein.
When treating Plasmodium-infected erythrocytes with

violacein, we found that higher concentrations of the pig-
ment caused the complete rupture of the red blood cells.
Hence, we decided to investigate the cytotoxicity of viola-
cein and deoxyviolacein. In spite of their very similar
structure, violacein was very toxic to mammalian cells,
whereas deoxyviolacein showed selective toxicity against
Plasmodium (the parasite was at least 20× more sensitive
to this compound than were the mammalian cells) than
violacein (the parasite showing only ca. 5× greater sensi-
tivity to this compound than did mammalian cells). The
IC50 of violacein produced from our synthetic operon is
about ~ 1.4 μM for HepG2 and ~ 2.5 μM for COS-7 cell
lines, in agreement with published results, indicating a de-
gree of specificity of the compound against cancer cells.
On the other hand, the HepG2 cell line showed no signifi-
cant viability loss when treated with deoxyviolacein con-
centrations close to 200 μM. When treating the
Trypanosoma cruzi Tulahuen strain with violacein and
deoxyviolacein, we also observed much higher biological
activity with violacein (IC50 of 1.51 μM± 0.4) than with
deoxyviolacein (IC50 > 50 μM).

Conclusions
We have utilized synthetic operons encoding enzymes
for complete or partial pathways for the biosynthesis of
violacein or deoxyviolacein in E. coli strains, and investi-
gated the biological activity of the produsts. Deoxyviola-
cein, in spite of its lower antiparasitic activity, might be
a better starting point than violacein for the develop-
ment of a novel antiparasitic drug due to its low toxicity
to human cells. However, it is important to note that we
did not investigate the import of either compound by
the target cells, and so cannot exclude the possibility
that deoxyviolacein’s lower toxicity was due to an ineffi-
cient import into mammalian or parasite cells.

Additional files
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(PDF 216 kb)

Additional file 2: Figure S2. Cytotoxicity of deoxyviolacein and violacein
to HepG2 cells. Morphological changes of HepG2 cells treated with 0.8
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(PDF 4205 kb)

Acknowledgements
Not applicable.

Funding
This study has supported by Sao Paulo Research Foundation (FAPESP) Grant
2012/16525-2 to FTMC and Grant 2015/03553-6 to EB, contract from the
European Commission under the FP7 Collaborative Program, UNICELLSYS to
SGO, UK Biotechnology and Biological Sciences Research Council (BB/F008228/1)
to SGO and The Bill and Melinda Gates foundation (OPP1087646 to EB and SGO).
TAT was supported by a CNPq fellowship and FTMC is a CNPq research fellow
level 1C.

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions
JA provided the original synthetic violacein operon and advised on violacein
expression. EB subcloned the complete and partial violacein operons and
performed large-scale crude violacein and deoxyviolacein preparations. AR
optimized violacein and deoxyviolacein extractions and JES and DRS planned
and performed compound purification. EB, FTMC and TAT planned and
performed the Plasmodium falciparum and mammalian cytotoxicity in vitro
assays. RK and AA designed and performed the Trypanosoma cruzi in vitro
assays. EB and SGO conceived the project and wrote the manuscript. All au-
thors read, edited and approved the final version of the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Cambridge Systems Biology Centre and Department of Biochemistry,
University of Cambridge, Cambridge, UK. 2Department of Structural and
Functional Biology, Institute of Biology, UNICAMP, Campinas, SP, Brazil.
3Laboratory of Tropical Diseases – Prof. Dr. Luiz Jacintho da Silva -
Department of Genetics, Evolution, Microbiology and Immunology,
University of Campinas, Campinas, SP, Brazil. 4Laboratory of Medicinal and
Computational Chemistry, University of São Paulo, São Carlos, SP, Brazil.
5Department of Chemistry, University of Cambridge, Cambridge, UK.
6Department of Pathology, University of Cambridge, Cambridge, UK.

Received: 23 August 2017 Accepted: 15 March 2018

References
1. Choi SY, Yoon KH, Lee JI, Mitchell RJ. Violacein: properties and production of

a versatile bacterial pigment. Biomed Res Int. 2015;2015:465056.
2. Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, Di

Stefano E, Mattei M, Silvestri R, Schippa S, et al. Violacein, an indole-derived
purple-colored natural pigment produced by Janthinobacterium lividum,
inhibits the growth of head and neck carcinoma cell lines both in vitro and
in vivo. Tumour Biol. 2016;37(3):3705–17.

3. Sasidharan A, Sasidharan NK, Amma DB, Vasu RK, Nataraja AV, Bhaskaran K.
Antifungal activity of violacein purified from a novel strain of
Chromobacterium sp. NIIST (MTCC 5522). J Microbiol. 2015;53(10):694–701.

4. Smith HJ, Foreman CM, Akiyama T, Franklin MJ, Devitt NP, Ramaraj T.
Genome sequence of janthinobacterium sp. CG23_2, a violacein-producing
isolate from an Antarctic supraglacial stream. Genome Announc. 2016;4(1).

5. Myeong NR, Seong HJ, Kim HJ, Sul WJ. Complete genome sequence of
antibiotic and anticancer agent violacein producing Massilia sp. strain NR 4-1.
J Biotechnol. 2016;223:36–7.

Bilsland et al. BMC Biotechnology  (2018) 18:22 Page 6 of 8

https://doi.org/10.1186/s12896-018-0428-z
http://www.chemspider.com
http://www.chemspider.com
https://doi.org/10.1186/s12896-018-0428-z


6. Lu Y, Wang L, Xue Y, Zhang C, Xing XH, Lou K, Zhang Z, Li YD, Zhang G, Bi
J, et al. Production of violet pigment by a newly isolated psychrotrophic
bacterium from a glacier in Xinjiang China. Biochem Eng J. 2009;43(2):
131–41.

7. Duran N, Justo GZ, Ferreira CV, Melo PS, Cordi L, Martins D. Violacein:
properties and biological activities. Biotechnol Appl Biochem. 2007;48(Pt 3):
127–33.

8. Antonisamy P, Kannan P, Ignacimuthu S. Anti-diarrhoeal and ulcer-
protective effects of violacein isolated from Chromobacterium violaceum in
Wistar rats. Fundam Clin Pharmacol. 2009;23(4):483–90.

9. Lichstein HC, VANdS VF. The antibiotic activity of violacein, prodigiosin, and
phth iocol. J Bacteriol. 1946;52:145.

10. Aruldass CA, Masalamany SR, Venil CK, Ahmad WA: Antibacterial mode of
action of violacein from Chromobacterium violaceum UTM5 against
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus
(MRSA). Environ Sci Pollut Res Int. 2018;25(6):5164–5180. https://doi.org/10.
1007/s11356-017-8855-2. Epub 2017 Mar 31.

11. Dodou HV, de Morais Batista AH, Sales GWP, de Medeiros SC, Rodrigues ML,
Nogueira PCN, Silveira ER, Nogueira NAP. Violacein antimicrobial activity on
Staphylococcus epidermidis and synergistic effect on commercially available
antibiotics. J Appl Microbiol. 2017;123(4):853–60.

12. Becker MH, Brucker RM, Schwantes CR, Harris RN, Minbiole KP. The
bacterially produced metabolite violacein is associated with survival of
amphibians infected with a lethal fungus. Appl Environ Microbiol. 2009;
75(21):6635–8.

13. Duran N, Campos V, Riveros R, Joyas A, Pereira MF, Haun M. Bacterial
chemistry-III: preliminary studies on trypanosomal activities of
Chromobacterium violaceum products. Anais da Academia Brasileira de
Ciencias. 1989;61(1):31–6.

14. Duran N, Antonio RV, Haun M, Pilli RA. Biosynthesis of a trypanocide by
Chromobacterium violaceum. World J Microbiol Biotechnol. 1994;10(6):
686–90.

15. Leon LL, Miranda CC, De Souza AO, Duran N. Antileishmanial activity of the
violacein extracted from Chromobacterium violaceum. J Antimicrob
Chemother. 2001;48(3):449–50.

16. Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D, Bazzicalupo P, Di
Schiavi E, Egan S. Antinematode activity of Violacein and the role of the
insulin/IGF-1 pathway in controlling violacein sensitivity in Caenorhabditis
elegans. PLoS One. 2014;9(10):e109201.

17. Andrighetti-Frohner CR, Antonio RV, Creczynski-Pasa TB, Barardi CR, Simoes
CM. Cytotoxicity and potential antiviral evaluation of violacein produced by
Chromobacterium violaceum. Memorias do Instituto Oswaldo Cruz. 2003;
98(6):843–8.

18. de Carvalho DD, Costa FT, Duran N, Haun M. Cytotoxic activity of violacein
in human colon cancer cells. Toxicol in Vitro : an international journal
published in association with BIBRA. 2006;20(8):1514–21.

19. Lopes SC, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FL, Goelnitz U,
Wunderlich G, Facchini G, Brocchi M, Duran N, et al. Violacein extracted
from Chromobacterium violaceum inhibits Plasmodium growth in vitro and
in vivo. Antimicrob Agents Chemother. 2009;53(5):2149–52.

20. Riveros R, Haun M, Duran N. Effect of growth conditions on production of
violacein by Chromobacterium violaceum (BB-78 strain). Braz. J. Med. Biol.
Res. = Rev. Bras. Pesqui. Med. Biol. / Sociedade Bras. Biol. [et al]. 1989;22(5):
569–77.

21. Blosser RS, Gray KM. Extraction of violacein from Chromobacterium
violaceum provides a new quantitative bioassay for N-acyl homoserine
lactone autoinducers. J Microbiol Methods. 2000;40(1):47–55.

22. Antonio RV, Creczynski-Pasa TB. Genetic analysis of violacein biosynthesis by
Chromobacterium violaceum. Genet. Mol. Res. : GMR. 2004;3(1):85–91.

23. Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C, Schippa S. Violacein
and biofilm production in Janthinobacterium lividum. J Appl Microbiol. 2007;
102(4):992–9.

24. Ambrozic Avgustin J, Zgur Bertok D, Kostanjsek R, Avgustin G. Isolation and
characterization of a novel violacein-like pigment producing psychrotrophic
bacterial species Janthinobacterium svalbardensis sp. nov. Antonie Van
Leeuwenhoek. 2013;103(4):763–9.

25. Ti TY, Tan WC, Chong AP, Lee EH. Nonfatal and fatal infections caused by
Chromobacterium violaceum. Clin. Infect. Dis. : an official publication of the
Infectious Diseases Society of America. 1993;17(3):505–7.

26. Ponte R, Jenkins SG. Fatal Chromobacterium violaceum infections associated
with exposure to stagnant waters. Pediatr Infect Dis J. 1992;11(7):583–6.

27. Patijanasoontorn B, Boonma P, Wilailackana C, Sitthikesorn J, Lumbiganon P,
Chetchotisakd P, Noppawinyoowong C, Simajareuk K. Hospital acquired
Janthinobacterium lividum septicemia in Srinagarind Hospital. J. Med. Assoc.
Thai. = Chotmaihet thangphaet. 1992;75(Suppl 2):6–10.

28. Farrell K, Van Werkhooven M, Gratten M, Aiken GH. Chromobacterium
violaceum infections. Report of a fatal case. P. N. G. Med. J. 1979;22(4):94–5.

29. Jiang PX, Wang HS, Zhang C, Lou K, Xing XH. Reconstruction of the
violacein biosynthetic pathway from Duganella sp. B2 in different
heterologous hosts. Appl Microbiol Biotechnol. 2010;86(4):1077–88.

30. Fang MY, Zhang C, Yang S, Cui JY, Jiang PX, Lou K, Wachi M, Xing XH. High
crude violacein production from glucose by Escherichia coli engineered with
interactive control of tryptophan pathway and violacein biosynthetic
pathway. Microb Cell Factories. 2015;14:8.

31. Chuang J, Boeke JD, Mitchell LA. Coupling yeast golden gate and VEGAS for
efficient assembly of the violacein Pathway in saccharomyces cerevisiae.
Methods Mol Biol. 2018;1671:211–25.

32. Rodrigues AL, Trachtmann N, Becker J, Lohanatha AF, Blotenberg J, Bolten
CJ, Korneli C, de Souza Lima AO, Porto LM, Sprenger GA, et al. Systems
metabolic engineering of Escherichia coli for production of the antitumor
drugs violacein and deoxyviolacein. Metab Eng. 2013;20:29–41.

33. Rodrigues AL, Gocke Y, Bolten C, Brock NL, Dickschat JS, Wittmann C.
Microbial production of the drugs violacein and deoxyviolacein:
analytical development and strain comparison. Biotechnol Lett. 2012;
34(4):717–20.

34. Rodrigues AL, Becker J, de Souza Lima AO, Porto LM, Wittmann C. Systems
metabolic engineering of Escherichia coli for gram scale production of the
antitumor drug deoxyviolacein from glycerol. Biotechnol Bioeng. 2014;
111(11):2280–9.

35. Sanchez C, Brana AF, Mendez C, Salas JA. Reevaluation of the violacein
biosynthetic pathway and its relationship to indolocarbazole biosynthesis.
Chembiochem : a European journal of chemical biology. 2006;7(8):1231–40.

36. Brady SF, Chao CJ, Handelsman J, Clardy J. Cloning and heterologous
expression of a natural product biosynthetic gene cluster from eDNA. Org
Lett. 2001;3(13):1981–4.

37. August PR, Grossman TH, Minor C, Draper MP, MacNeil IA, Pemberton JM,
Call KM, Holt D, Osburne MS. Sequence analysis and functional characterization
of the violacein biosynthetic pathway from Chromobacterium violaceum.
J Mol Microbiol Biotechnol. 2000;2(4):513–9.

38. Fuller JJ, Ropke R, Krausze J, Rennhack KE, Daniel NP, Blankenfeldt W, Schulz
S, Jahn D, Moser J. Biosynthesis of violacein, structure and function of l-
Tryptophan Oxidase VioA from chromobacterium violaceum. J Biol Chem.
2016;291(38):20068–84.

39. Shinoda K, Hasegawa T, Sato H, Shinozaki M, Kuramoto H, Takamiya Y, Sato
T, Nikaidou N, Watanabe T, Hoshino T. Biosynthesis of violacein: a genuine
intermediate, protoviolaceinic acid, produced by VioABDE, and insight into
VioC function. Chem Commun (Camb). 2007;40:4140–2.

40. Wilkinson B, Micklefield J. Mining and engineering natural-product
biosynthetic pathways. Nat Chem Biol. 2007;3(7):379–86.

41. Wang HS, Wang FZ, Zhu XF, Yan YC, Yu XH, Jiang PX, Xing XH. Biosynthesis
and characterization of violacein, deoxyviolacein and oxyviolacein in
heterologous host, and their antimicrobial activities. Biochem Eng J. 2012;
67:148–55.

42. He L, Xiu Y, Jones JA, Baidoo EE, Keasling JD, Tang YJ, Koffas MA.
Deciphering flux adjustments of engineered E. coli cells during
fermentation with changing growth conditions. Metab Eng. 2017;39:
247–56.

43. Sun H, Zhao D, Xiong B, Zhang C, Bi C. Engineering Corynebacterium
glutamicum for violacein hyper production. Microb Cell Factories. 2016;15(1):
148.

44. Jones JA, Vernacchio VR, Lachance DM, Lebovich M, Fu L, Shirke AN, Schultz
VL, Cress B, Linhardt RJ, Koffas MA. ePathOptimize: a combinatorial
approach for transcriptional balancing of metabolic pathways. Sci Rep. 2015;
5:11301.

45. Xu P, Rizzoni EA, Sul SY, Stephanopoulos G. Improving metabolic pathway
efficiency by statistical model-based multivariate regulatory metabolic
engineering. ACS Synth Biol. 2017;6(1):148–58.

46. Wille G, Steglich W. A short synthesis of the bacterial pigments violacein
and deoxyviolacein. Synthesis. 2001;5:759–62.

47. Millet J, Alibert S, Torrentino-Madamet M, Rogier C, Santelli-Rouvier C, Bigot
P, Mosnier J, Baret E, Barbe J, Parzy D, et al. Polymorphism in Plasmodium
falciparum drug transporter proteins and reversal of in vitro chloroquine

Bilsland et al. BMC Biotechnology  (2018) 18:22 Page 7 of 8

https://doi.org/10.1007/s11356-017-8855-2
https://doi.org/10.1007/s11356-017-8855-2


resistance by a 9,10-dihydroethanoanthracene derivative. Antimicrob Agents
Chemother. 2004;48(12):4869–72.

48. Ferreira RS, Dessoy MA, Pauli I, Souza ML, Krogh R, Sales AI, Oliva G,
Dias LC, Andricopulo AD. Synthesis, biological evaluation, and structure-
activity relationships of potent noncovalent and nonpeptidic cruzain
inhibitors as anti-Trypanosoma cruzi agents. J Med Chem. 2014;57(6):
2380–92.

49. Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC. Efficient technique
for screening drugs for activity against Trypanosoma cruzi using parasites
expressing beta-galactosidase. Antimicrob Agents Chemother. 1996;40(11):
2592–7.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Bilsland et al. BMC Biotechnology  (2018) 18:22 Page 8 of 8


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Bacterial strains and plasmids
	Production and purification of violacein and deoxyviolacein
	Violacein and deoxyviolacein purification
	Deoxyviolacein
	Violacein

	Plasmodium falciparum drug sensitivity assays
	Trypanosoma cruzi drug sensitivity assays
	Cytotoxicity of violacein and deoxyviolacein

	Results
	Activity of purified violacein and deoxyviolacein against T. cruzi
	Antiplasmodial activity of purified violacein and deoxyviolacein
	Cytotoxicity of violacein and deoxyviolacein

	Discussion
	Conclusions
	Additional files
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

