The Serratia LuxR family regulator CarR₃₉₀₀₆ activates transcription independently of cognate quorum sensing signals

Simon Poulter,¹ Timothy M. Carlton,¹ David R. Spring² and George P.C. Salmond^{1*} ¹Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK. ²Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.

Summary

In Gram-negative bacteria, quorum sensing control of gene expression is mediated by transcription factors of the LuxR family, whose DNA-binding affinity is modulated by diffusible N-acyl homoserine lactone (AHL) signalling molecules. In Serratia sp. ATCC 39006 and the plant pathogen Erwinia carotovora ssp. carotovora (Ecc), the biosynthesis of the β -lactam antibiotic 1-carbapen-2-em-3-carboxylic acid (Car) is under quorum sensing control. This study has revealed that, uniquely, the LuxR family transcriptional activator CarR₃₉₀₀₆ from Serratia 39006 has no detectable affinity for cognate AHL molecules. Furthermore, CarR₃₉₀₀₆ was shown to be naturally competent to bind to its target promoter with high affinity, activate transcription and resist cellular proteolysis, and was unaffected by AHL signals. Experiments with chimeric proteins suggest that the C-terminal DNAbinding domain of CarR₃₉₀₀₆ may be responsible for conferring AHL independence. In contrast, we show that the homologous CarR_{Ecc} protein binds to its 3O-C6-HSL ligand with high affinity, and that the highly conserved Trp-44 residue is critical for this interaction. Unlike TraR from Agrobacterium tumefaciens, CarR_{Ecc} is not directly protected from cellular proteolysis by AHL binding, but via AHL-induced DNA binding. At physiological protein concentrations, AHL binding induces CarR_{Ecc} to bind to its target promoter with higher affinity and activate transcription.

Introduction

A diverse array of bacterial species regulate gene expression in response to population cell density, in a process termed guorum sensing (QS). Gram-negative proteobacteria sense population density using diffusible N-acyl homoserine lactone (AHL) molecules. AHLs act as ligands to modulate the DNA-binding ability of cytoplasmic transcription factors of the LuxR family, thereby controlling expression of key gene sets (Whitehead et al., 2001). LuxR family proteins are highly divergent in primary sequence, but all share conserved secondary structure and a common two-domain architecture (Fig. S1). The N-terminal domains of LuxR proteins contain an amphipathic AHL-binding pocket (Vannini et al., 2002; Zhang et al., 2002). In TraR from Agrobacterium tumefaciens, the cognate 3O-C8-HSL inducer is completely buried within this pocket, and forms four key hydrogen bonds with the highly conserved TraR residues Tyr-53, Trp-57, Asp-70 and Thr-129 (Vannini et al., 2002; Zhang et al., 2002) (Fig. S1). In the LuxR family transcriptional activators TraR. LuxR from Vibrio fischeri and LasR from Pseudomonas aeruginosa, binding of the AHL inducer drives the formation of homodimers (Choi and Greenberg, 1992; Qin et al., 2000; Zhu and Winans, 2001; Kiratisin et al., 2002; Schuster et al., 2004; Bottomlev et al., 2007). Dimerization facilitates binding of a helixturn-helix motif in the C-terminal domain of the LuxR protomers to palindromic DNA sequences upstream of target promoters, thereby recruiting RNA polymerase for transcription (Vannini et al., 2002; Zhang et al., 2002; Schuster et al., 2004; Urbanowski et al., 2004). AHL binding was also shown to protect TraR from degradation by the cellular proteases ClpP and Lon (Zhu and Winans, 2001).

The LuxR family transcriptional activator CarR controls production of the β -lactam antibiotic carbapenem (1-carbapen-2-em-3-carboxylic acid; Car) in the plant pathogen *Erwinia carotovora* ssp. *carotovora* (*Ecc*) and in *Serratia* ATCC 39006 (S39006) (Parker *et al.*, 1982; Bycroft *et al.*, 1988; McGowan *et al.*, 1995; Cox *et al.*, 1998). In *Ecc*, the 3O-C6-HSL inducer synthesized by the AHL synthase Carl interacts with the CarR_{Ecc} protein,

Accepted 10 March, 2011. *For correspondence. E-mail gpcs@mole. bio.cam.ac.uk; Tel. (+44) 1223 33650; Fax (+44) 1223 766108.

allowing it to bind to the promoter of the Car biosynthetic operon (carA-H) and activate transcription (McGowan et al., 1995; 1996; 1997; 2005; Welch et al., 2000). Unlike other LuxR proteins, data from in vitro experiments suggested that CarR_{Ecc} may exist as a pre-formed dimer, which forms a higher-order multimer upon the addition of 3O-C6-HSL (Welch et al., 2000). In addition to its role as an AHL-dependent regulator, CarR_{Ecc} was also reported to activate Car biosynthesis in the absence of AHL molecules, when overexpressed in trans (McGowan et al., 1995). This phenomenon, which is indicative of a mass-action effect caused by high concentrations of apo-CarR_{Ecc}, has not been reported for any other LuxR protein. Even when strongly overexpressed, TraR, LuxR from V. fischeri and RhIR and LasR from P. aeruginosa all required their cognate AHL molecule to function (Zhu and Winans, 1999; Lamb et al., 2003; Schuster et al., 2004; Urbanowski et al., 2004).

Serratia ATCC 39006 possesses a homologous carA-H biosynthetic cluster under the transcriptional control of the CarR₃₉₀₀₆ protein (Cox et al., 1998; Thomson et al., 2000). CarR₃₉₀₀₆ and CarR_{Ecc} share strong overall amino acid identity (59.3%) and similarity (75.0%) (Fig. S1). Carbapenem production in Serratia 39006 is completely dependent upon production of the short-chain C4-HSL signal by the Smal synthase (Thomson et al., 2000). However, in an AHL-deficient smal mutant, a subsequent mutation in the gene encoding a second LuxR homologue (the SmaR repressor) restored wild-type carbapenem production (Slater et al., 2003), suggesting that CarR₃₉₀₀₆ can activate carA-H transcription in the absence of AHLs. According to this model, QS control of Car production is imposed by the AHL-responsive SmaR protein, via transcriptional repression of the carR₃₉₀₀₆ gene (and the carA promoter itself) in the absence of AHLs (Slater et al., 2003; Fineran et al., 2005a). In support of this model, expression of carR₃₉₀₀₆ in trans complemented the carbapenem production defect in an Ecc carR_{Ecc} mutant, in the absence of AHLs (Cox et al., 1998). However, the mass-action effect observed with overexpressed CarR_{Ecc} made the significance of this result unclear. It was also recently reasoned that CarR₃₉₀₀₆ might be inherently transcriptionally active, but could become deactivated by binding to cognate AHLs (Tsai and Winans, 2010), as has been proposed for EsaR from Pantoea stewartii (Schu et al., 2009).

The aim of this study was therefore to confirm and investigate the phenomenon of AHL independence in CarR₃₉₀₀₆, in comparison with its more extensively studied homologue CarR_{Ecc}. We show that, uniquely, the *Serratia* CarR₃₉₀₀₆ protein has no detectable affinity for AHLs, but can still bind to its target promoter with high affinity and activate transcription in the absence of AHLs. We further show that, unlike TraR, protection of CarR_{Ecc} and CarR₃₉₀₀₆ from cellular proteolysis relies on DNA binding. Finally, our

data suggest that the C-terminal domain of CarR₃₉₀₀₆ may be responsible for conferring AHL independence.

Results

*CarR*₃₉₀₀₆ has no detectable affinity for Erwinia or Serratia *AHLs*

First, we analysed the binding of $CarR_{\mbox{\tiny Ecc}}$ and $CarR_{\mbox{\tiny 39006}}$ to cognate AHL signals, using isothermal titration calorimetry (ITC). The TraR protein from A. tumefaciens forms a hydrogen bond between its Trp-57 residue and the carbonyl group of the AHL lactone ring (Vannini et al., 2002; Zhang et al., 2002). This H-bond is also formed between the equivalent Trp-60 residue of LasR from P. aeruginosa and its 3O-C12-HSL ligand (Bottomley et al., 2007; Zou and Nair. 2009). This functional tryptophan residue is very highly conserved among LuxR homologues, including CarR_{Ecc} (Cox et al., 1998) (Fig. S1). In contrast, CarR₃₉₀₀₆ contains a cysteine at this position (Cys-44), which forms much weaker H-bonds than tryptophan (Fig. S1). It was previously hypothesized that this W44C substitution might confer AHL independence to CarR₃₉₀₀₆ (Slater et al., 2003). The remaining three H-bonding residues are conserved in CarR₃₉₀₀₆ (Fig. S1).

To test the importance of the strongly conserved tryptophan residue for AHL binding, the highly soluble His6-tagged AHL-binding domain of CarREcc (residues 1 to 167) was purified by Ni-NTA affinity chromatography, and ITC analysis demonstrated its strong affinity for the Ecc inducer 3O-C6-HSL (Fig. 1A). Based on the observed stoichiometry of the interaction, binding of 3O-C6-HSL to CarR_{Ecc}¹⁻¹⁶⁷ was fitted to a two binding site model, probably reflecting one molecule of 3O-C6-HSL binding to each protomer in a CarR_{Ecc} dimer (Welch et al., 2000) (Fig. 1A). The values for the calculated dissociation constants ($K_d = 0.72 \,\mu M$ and $3.53 \,\mu M$) are consistent with previous fluorescence quenching data (Welch et al., 2000). Site-directed mutagenesis of the Trp-44 residue to cysteine completely abolished any detectable interaction between CarR_{Ecc} and 3O-C6-HSL (Fig. 1A). This strongly suggests that H-bonding by the Trp-44 residue is essential for AHL binding.

The AHL-binding ability of the N-terminal domain of CarR₃₉₀₀₆ was then compared with that of His₆-CarR_{Ecc}¹⁻¹⁶⁷. No detectable interaction was observed between the His₆-CarR₃₉₀₀₆¹⁻¹⁶⁷ protein and either 3O-C6-HSL or the *Serratia* C4-HSL ligand (Fig. 1B), suggesting that CarR₃₉₀₀₆ is unresponsive to the cognate *Erwinia* and *Serratia* AHL signals.

At physiological concentrations, $CarR_{Ecc}$ requires AHLs to activate transcription

To directly isolate the activity of $CarR_{Ecc}$ and $CarR_{39006}$ in the absence of any endogenous host regulation, these

Fig. 1. $CarR_{39006}$ does not detectably bind to *Serratia* or *Erwinia* AHLs.

A. ITC of synthetic 3O-C6-HSL titrated into wild-type (left) and W44C (right) variants of His_e-CarR_{Ecc}¹⁻¹⁶⁷. For His_e-CarR_{Ecc}¹⁻¹⁶⁷, K_d values were calculated as 0.72 \pm 0.15 μ M (binding site 1) and 3.53 \pm 0.41 μ M (binding site 2).

B. Titration of synthetic C4-HSL (left) and 3O-C6-HSL (right) into a $\rm His_6\text{-}CarR_{39006}^{-1:67}$ solution.

Upper panel, raw heat uptake data for sequential 10 μ l injections of 600 μ M of the indicated AHL into a solution containing 60 μ M of the relevant His₆-CarR¹⁻¹⁶⁷ variant at 30°C.

Lower panel, integrated heat data corrected for heats of dilution with theoretical fit to a two binding site model using the Origin VP-ITC software.

proteins were expressed in the heterologous host *Escherichia coli* DH5 α and assessed for their ability to activate transcription of their target carbapenem operon promoters in the presence of AHL inducers.

When expressed in *E. coli* DH5 α from the pQE80Lderived plasmid pSP78 induced with 1 μ M IPTG, hexahistidine-tagged CarR_{Ecc} required 1 μ M 3O-C6-HSL to activate transcription from the *Ecc PcarA::lacZ* transcriptional reporter plasmid pSP14 (Fig. 2A). No β -galactosidase activity was detected with either the empty pQE80L vector (Fig. 2A), or 3O-C6-HSL in the absence of His₆-CarR_{Ecc} (data not shown). His₆-tagged CarR_{Ecc} retained ~ 85 % of the transcriptional activity of the untagged protein (data not shown). Non-cognate AHLs of varying acyl chain length and oxidation state were unable to induce His₆-CarR_{Ecc} to activate *Ecc carA* transcription (Fig. 2A), consistent with the observation that CarR_{Ecc} has a low affinity for these signals (Welch *et al.*, 2000). As previously reported, the non-cognate 3O-C8-HSL signal also induced His₆-CarR_{Ecc} to activate *carA* transcription, to a higher level than the endogenous 3O-C6-HSL (Welch *et al.*, 2000) (Fig. 2A).

Binding to AHLs protects CarR_{Ecc} from cellular degradation

Previous studies demonstrated that binding to AHLs protected the *A. tumefaciens* TraR protein from cellular

Fig. 2. Binding to cognate acyl homoserine lactones protects CarR_{Ecc} from cellular proteolysis and activates *carA* transcription. Full-length N-terminal His₆-CarR_{Ecc} (A) and site-directed variant His₆-CarR_{Ecc} W44C (B) were expressed from pSP78 and pSP90, respectively, in *E. coli* DH5α carrying the *Ecc* P*carA*::*lacZ* transcriptional reporter plasmid pSP14. LB broths were supplemented with 1 µM IPTG, and either DMSO or a 1 µM final concentration of the indicated AHLs. Expression of the *carA* promoter was measured as β-galactosidase activity (expressed as Miller Units). A second sample was blotted with anti-His antibodies to detect His₆-CarR_{Ecc}. DH5α carrying pSP14 and the empty pQE80L vector was induced with IPTG as a negative control. Data shown are the means ± SD of three independent experiments.

© 2011 Blackwell Publishing Ltd, Molecular Microbiology, 80, 1120-1131

proteolysis (Zhu and Winans, 2001). In contrast, MrtR from *Mesorhizobium tianshanense* and RhIR from *P. aeruginosa* were stably expressed, but unable to activate transcription, in the absence of AHLs (Lamb *et al.*, 2003; Yang *et al.*, 2009). To assess whether binding to cognate AHLs was having any stabilizing effect on the CarR_{Ecc} protein *in vivo*, duplicate samples from the P*carA* transcription experiment were separated by SDS-PAGE and probed with anti-His antibodies to detect His₆-CarR_{Ecc}. Consistent with the model for TraR, His₆-CarR_{Ecc} was only detected in *E. coli* DH5 α cultures grown in the presence of 3O-C6-HSL and 3O-C8-HSL (Fig. 2A). Based on the experiments with TraR, it was hypothesized that binding to cognate AHLs protected His₆-CarR_{Ecc} from degradation by cellular proteases.

To test this hypothesis, a full-length version of the 'signal-blind' His6-CarREcc W44C mutant protein was expressed from pSP90 in *E. coli* DH5a carrying pSP14 (Fig. 2B). The signal-blind W44C variant was unable to resist cellular proteolysis or activate carA transcription in the presence of 3O-C6-HSL (Fig. 2B), suggesting that the ability to bind to AHLs is essential for CarR_{Ecc} to function and resist degradation at physiologically relevant concentrations. When the wild type and W44C variants were expressed with higher IPTG concentrations, CarR_{Ecc} protein levels were comparable via Western blotting, suggesting that the W44C mutation was not intrinsically attenuating CarR_{Ecc} production or stability (Fig. S2). These data also do not support the previous hypothesis that the W44C substitution in CarR₃₉₀₀₆ might be responsible for conferring AHL independence (Slater et al., 2003).

When overexpressed, $CarR_{Ecc}$ accumulates and activates carA transcription in the absence of AHLs

Based on the AHL-dependent nature of carA transcription (Fig. 2A) it was predicted that induction of pSP78 with 1 µM IPTG resulted in approximately wild-type His6-CarREcc protein levels. We next investigated the previously reported phenomenon of AHL-independent carA transcriptional activation, by overexpressing His6-CarREcc. Consistent with previous studies in Ecc and with the data in Fig. 2A, in E. coli DH5a cultures induced with lower IPTG concentrations (0 µM and 1 µM) PcarA transcription was dependent upon 3O-C6-HSL (Fig. 3A). However, as IPTG induction increased to 2 µM, carA transcription was activated in the absence of AHL, to ~ 60% of the level induced by 3O-C6-HSL. With 5 µM IPTG, Ecc carA transcription was identical in the presence or absence of 3O-C6-HSL. In each case, His6-CarREcc protein levels (assessed by Western blot) correlated with the increase in AHL-independent carA transcription. At higher IPTG induction levels, His₆-CarR_{Ecc} appeared to somehow over-

Fig. 3. AHL-independent CarR_{Ecc} accumulation directly correlates with *Erwinia carA* transcription. His₆-CarR_{Ecc} (A) and site-directed variant His₆-CarR_{Ecc} W44C (B) were expressed from pSP78 and pSP90, respectively, in *E. coli* DH5 α carrying the *Ecc PcarA::lacZ* reporter plasmid pSP14. LB broths were supplemented with the indicated concentration of IPTG, and either DMSO (open bars) or 1 μ M 3O-C6-HSL (grey bars). Expression of the *carA* promoter was measured as β -galactosidase activity (expressed as Miller Units). A second sample was blotted with anti-His antibodies to detect His₆-CarR_{Ecc}. DH5 α carrying pSP14 and the empty pQE80L vector was induced with 5 μ M IPTG as a negative control. Data shown are the means \pm SD of three independent experiments.

come degradation by cellular proteases, and activate *carA* transcription.

AHL-independent *Ecc carA* transcription and protein accumulation at higher IPTG induction levels was also observed with the signal-blind His_6 -CarR_{Ecc} W44C variant (Fig. 3B). This supports the hypothesis that AHL-independent CarR_{Ecc} function is caused by a mass-action effect that is unrelated to the ability to bind to AHLs.

$CarR_{39006}$ activates transcription and resists proteolysis in the absence of AHLs

We next tested the effect of AHLs on the transcriptional activity of the *Serratia* CarR₃₉₀₀₆ protein. In previous

Fig. 4. CarR₃₉₀₀₆ accumulation and *Serratia carA* transcription is unaffected by synthetic AHLs.

A. N-terminal His₆-CarR₃₉₀₀₆ was expressed from pSP79 in *E. coli* DH5 α carrying the *Serratia* P*carA*::*lacZ* transcriptional reporter plasmid pTA16. LB broths were supplemented with the indicated concentration of IPTG, and either DMSO (open bars), 1 μ M C4-HSL (grey bars) or 1 μ M 30-C6-HSL (black bars). Expression of the *carA* promoter was measured as β -galactosidase activity (expressed as Miller Units). A second sample was blotted with anti-His antibodies to detect His₆-CarR₃₉₀₀₆. DH5 α carrying pTA16 and the empty pQE80L vector was induced with 5 μ M IPTG as a negative control.

B. His₆-CarR₃₉₀₀₆ was expressed in *E. coli* DH5 α (pTA16), in the absence of IPTG, with 1 μ M of the indicated AHLs, and assayed for β -galactosidase activity. A culture was also induced with 2 μ M IPTG, as a positive control. Data shown are the means \pm SD of three independent experiments.

studies, it was unclear whether the apparent AHLindependent *carA* transcription in *Serratia* 39006 was the result of some inherent property of the CarR₃₉₀₀₆ protein, or due to other *Serratia*-specific regulatory factors or features of the *Serratia carA* promoter. To investigate AHL independence in the absence of potential complications from *Serratia*-specific regulation, CarR₃₉₀₀₆ was expressed in a heterologous host, *E. coli* DH5 α . In this host background, transcription from the *Serratia* P*carA*::*lacZ* transcriptional reporter plasmid pTA16 was activated by expression of His₆-CarR₃₉₀₀₆ from pSP79 (Fig. 4A). However, unlike CarR_{Ecc}, His₆-CarR₃₉₀₀₆ activated transcription in the absence of AHLs at all IPTG concentrations tested, consistent with previous genetic studies in *Ecc* and *Serratia* (Cox *et al.*, 1998; Fineran *et al.*, 2005a). Moreover, the addition of 1 μ M C4-HSL or 3O-C6-HSL to cultures did not significantly alter *carA* transcription (Fig. 4A). Western blotting also showed that the accumulation of the His₆-CarR₃₉₀₀₆ protein was not altered by the addition of either C4-HSL or 3O-C6-HSL (Fig. 4A). His₆-CarR₃₉₀₀₆ was also unresponsive to a broader range of non-cognate AHLs (Fig. 4B). Taken together, these data are consistent with a transcriptional activator that functions independently of AHLs.

Site-directed mutagenesis to convert the Cys-44 residue back to the highly conserved tryptophan slightly reduced the stability of His_6 -CarR₃₉₀₀₆, but did not restore AHL dependence (Fig. S3), strongly suggesting that the W44C substitution is not the sole cause of AHL independence in CarR₃₉₀₀₆.

*CarR*₃₉₀₀₆ has a naturally strong affinity for its target promoter

It has been demonstrated for other LuxR family proteins that binding to their cognate AHL increases their affinity for target DNA (Qin *et al.*, 2000; Schuster *et al.*, 2004; Urbanowski *et al.*, 2004). Unlike other LuxR family proteins, the full-length His₆-CarR_{Ecc} and His₆-CarR₃₉₀₀₆ proteins were estimated to be 60–70% soluble in the absence of AHLs, when expressed under lowtemperature (16°C) conditions (data not shown). We were therefore able to assess the DNA-binding affinity of Ni-NTA purified His₆-CarR proteins by *in vitro* electrophoretic mobility shift assays (EMSA), using digoxygenin (DIG)-labelled *carA* promoter fragments (Fig. 5).

In the absence of 3O-C6-HSL, His6-CarREcc displayed an intrinsic specific affinity for the Ecc carA promoter, with 100 nM His₆-CarR_{Ecc} forming a DNA-protein complex (Complex 1, Fig. 5A). Binding was assessed to be relatively weak, as only part of the DIG-labelled DNA was shifted. The weak affinity of apo-CarR_{Ecc} for its promoter DNA is consistent with AHL-independent carA transcription when the protein was overexpressed (Fig. 3A). When 3O-C6-HSL was added, His6-CarREcc formed DNAprotein complexes at lower protein concentrations (20 nM), indicating enhanced affinity of CarR_{Ecc} for the carA promoter (Fig. 5B). Addition of 3O-C6-HSL to the reaction mixture containing 40 nM and 100 nM His6-CarREcc also caused the formation of a more highly retarded DNA-protein complex (Complex 2, Fig. 5B). This complex may be compatible with carA DNA binding to an AHL-induced higher-order CarR multimer, as previously suggested (Welch et al., 2000). However, this EMSA method is not appropriate for accurate assessment of multimeric state. Alternatively, this DNA-protein complex

Fig. 5. Binding of Hise-CarR proteins to *carA* promoter DNA. EMSA assays were performed with Ni-NTA purified Hise-CarR_{Ecc} (A and B), Hise-CarR_{Ecc} (W44C (C and D) or Hise-CarR₃₉₀₀₆ (E, F and G), as described in *Experimental procedures. Ecc* and *Serratia carA* promoter DNA fragments were generated by PCR. Each lane contained 1.5 nM of appropriate DIG-labelled *carA* promoter DNA, the indicated concentration of the relevant Hise-CarR protein, and either DMSO, 5 μ M C4-HSL or 5 μ M 30-C6-HSL. Competition experiment lanes contained 1.5 nM DIG-labelled *carA* DNA, 100 nM of the relevant Hise-CarR protein, and a 50-fold excess (75 nM) of either unlabelled *carA* promoter DNA or a non-specific fragment. High and low mobility DNA-protein complexes are indicated as Complex 1 (C1) and Complex 2 (C2) respectively.

could represent CarR dimers bound to two distinct sites in the same *carA* promoter fragment, perhaps facilitating transcription via DNA looping (De Carlo *et al.*, 2006). Regardless of the CarR_{Ecc} multimeric state, the more highly retarded DNA–protein complex completely shifted the *carA* DNA, indicating that AHL-bound CarR_{Ecc} protein had a higher DNA affinity than apo-His₆-CarR_{Ecc}. Enhanced binding of CarR_{Ecc} to *carA* promoter DNA correlates with activation of *carA* transcription in the presence of 3O-C6-HSL (Fig. 3A).

Like the wild-type protein, His_6 -CarR_{Ecc} W44C had an intrinsic weak affinity for the *carA* promoter (Fig. 5C), but this was not altered by 3O-C6-HSL (Fig. 5D). This is consistent with a signal-blind CarR_{Ecc} variant that is unresponsive to AHLs, and therefore locked in a state with low DNA-binding affinity.

In contrast, His₆-CarR₃₉₀₀₆ displayed a strong intrinsic affinity for the *Serratia carA* promoter in the absence of AHLs, with 20 nM His₆-CarR₃₉₀₀₆ forming a DNA-protein

complex (Fig. 5E). In fact, the DNA-binding ability of His_6 -CarR₃₉₀₀₆ in the absence of AHLs closely matched that of His_6 -CarR_{Ecc} in the presence of 3O-C6-HSL (Fig. 5B) consistent with the hypothesis that CarR₃₉₀₀₆ is a 'locked-on' version of CarR_{Ecc}. Reactions containing 100 nM His₆-CarR₃₉₀₀₆ formed the more highly retarded DNA–protein complex (Complex 2), formation of which required 3O-C6-HSL with His₆-CarR_{Ecc}. The affinity of His₆-CarR₃₉₀₀₆ for the *Serratia carA* promoter was not altered by either C4-HSL or 3O-C6-HSL (Fig. 5F and G).

CarR protease resistance requires target promoter DNA

The ability of His₆-CarR_{Ecc} to bind to 3O-C6-HSL correlated with enhanced DNA affinity (Fig. 5B) but it was unclear how this was linked with protection from cellular proteolysis (Fig. 2). In TraR, AHL-mediated protease protection occurred in the absence of target promoter DNA, suggesting that AHL binding was protecting the protein directly

1126 S. Poulter et al.

(Zhu and Winans, 2001). Like the TraR model, 3O-C6-HSL could be directly protecting His_6 -CarR_{Ecc}, thereby allowing it to accumulate and activate *carA* transcription. Alternatively, CarR_{Ecc}-3O-C6-HSL complexes could be resisting proteolysis via enhanced binding to target DNA. In this second model, protection from proteolysis would only occur in the presence of promoter DNA.

To test if either of the two models was correct. His6-CarREcc accumulation was assessed in the absence of the carA promoter, by expressing pSP78 (encoding His6-CarREcc) in E. coli DH5a carrying the promoterless pRW50 progenitor plasmid instead of the PcarA::lacZ reporter pSP14. In the presence of 3O-C6-HSL, His6-CarREcc was only detectable by Western blot in E. coli cells containing the carA promoter (pSP14) but not in its absence (pRW50) (Fig. 6A). Similarly, His₆-CarR₃₉₀₀₆ expressed from pSP79 was only detectable in the presence of the Serratia carA promoter (pTA16) (Fig. 6B). In fact, His₆-CarR_{Ecc} and His₆-CarR₃₉₀₀₆ expressed in the presence of pRW50 required approximately 50- to 200-fold higher IPTG induction to accumulate to a similar level as when expressed with pSP14 or pTA16 (Fig 6C and D). This suggests that carA promoter DNA is involved in stabilizing the His6-CarR proteins.

More importantly, addition of 3O-C6-HSL did not significantly protect His_6 -CarR_{Ecc} from proteolysis in the absence of target promoter DNA (Fig. 6C). This result disputes the model that CarR_{Ecc} is directly protected from cellular proteolysis by AHL binding, and instead suggests that the protective action of 3O-C6-HSL may be mediated indirectly, via binding of His₆-CarR proteins to the *carA* promoter. This model of CarR protease protection is strikingly different from that currently proposed for TraR (Zhu and Winans, 1999; 2001).

The C-terminal domain of CarR₃₉₀₀₆ may confer AHL independence

The C-terminal DNA-binding domains of CarR_{Ecc} and CarR₃₉₀₀₆ share an amino acid identity of 67.4% (86.0% similarity). The two proteins are especially well-conserved in the predicted recognition helix (α 9) of the helix-turnhelix DNA-binding motif (Fig. S4). CarR₃₉₀₀₆ expressed from a multicopy plasmid can also complement a carR_{Ecc} mutation in Ecc 39048 (Cox et al., 1998). By expressing pSP78 in the presence of pTA16, and pSP79 with pSP14, we next showed that $CarR_{Ecc}$ and $CarR_{39006}$ were functionally interchangeable, activating maximal transcription from the heterologous carA promoter (Fig. S5). Moreover, the response of each CarR protein to AHLs was retained while activating either carA promoter, suggesting that the ability of CarR₃₉₀₀₆ to activate carA transcription in the absence of AHLs was due to an inherent property of the protein itself (Fig. S5).

Fig. 6. Accumulation of His₆-CarR proteins requires the presence of target *carA* promoter DNA. His₆-CarR_{Ecc} (A) and His₆-CarR₃₉₀₀₆ (B) were expressed from pSP78 and pSP79, respectively, in *E. coli* DH5 α carrying the empty pRW50 vector (No Promoter) or either pSP14 or pTA16 (Promoter). LB broths were supplemented with the indicated concentration of IPTG. For CarR_{Ecc}, cultures were also supplemented with 1 μ M 30-C6-HSL. Proteins were separated by SDS-PAGE and blotted with anti-His antibodies. Purified His₆-CarR_{Ecc} (C) and His₆-CarR_{Ecc} (C) and His₆-CarR₃₉₀₀₆ (D) were also expressed in the presence or absence of the *carA* promoter, in the absence (DMSO control) or presence of 1 μ M 30-C6-HSL, with increasing concentrations of IPTG.

However, these data gave no clues as to the functional differences between the CarR_{Ecc} and CarR₃₉₀₀₆ proteins that caused them to behave so differently. Given the strong sequence identity between the C-terminal DNA-binding domains of the two CarR proteins, it was previously hypothesized that AHL independence might be conferred by the N-terminal domain of CarR₃₉₀₀₆ (Slater *et al.*, 2003). To test this hypothesis, the CarR₃₉₀₀₆ N-terminal domain (residues 1 to 158) was fused to the C-terminal domain of the CarR₁₂₀₀₆ protein (residues 159 to 244) to form a CarR_{39006-Ecc} domain chimera, and vice versa to create a CarR_{Ecc-39006} chimera.

To identify which domain of the CarR₃₉₀₀₆ protein was responsible for AHL independence, these CarR domain chimeras were expressed in *E. coli* DH5 α carrying pSP14.

Fig. 7. The C-terminal domain of CarR₃₉₀₀₆ may confer AHL independence. His₆-tagged CarR_{Ecc-39006} (A) and CarR_{39006-Ecc} (B) chimera proteins were expressed from pSP89 and pSP88, respectively, in *E. coli* DH5 α carrying the transcriptional reporter plasmid pSP14. LB broths were supplemented with the indicated concentration of IPTG, and either DMSO (open bars) or 1 μ M 3O-C6-HSL (grey bars). Expression of the *carA* promoter was measured as β-galactosidase activity (expressed as Miller Units). A second sample was blotted with anti-His antibodies. Data shown are the means ± SD of three independent experiments. Schematic diagrams show the domain structure of the chimera proteins, which were fused at amino acid 158 of the relevant CarR protein.

The His₆-CarR_{Ecc-39006} chimera expressed from pSP89 accumulated and activated carA transcription at low IPTG induction levels, and was not significantly affected by the addition of 3O-C6-HSL (Fig. 7A). This result was very similar to that induced by wild-type His6-CarR39006, suggesting that the C-terminal domain of CarR₃₉₀₀₆ may be conferring ligand independence, contrary to our previous hypothesis. Control experiments showed that the CarR₃₉₀₀₆ C-terminal domain alone could not activate carA transcription (data not shown). In contrast, the His₆-CarR_{39006-Ecc} chimera expressed from pSP88 was far less able to accumulate, or activate transcription (Fig. 7B). In fact, the His₆-CarR_{39006-Ecc} protein acted in a similar fashion to that of wild-type His₆-CarR_{Ecc} grown in the absence of 3O-C6-HSL, or His6-CarREcc W44C grown in the presence of 3O-C6-HSL (Fig. 3).

Discussion

This study has furthered our understanding of the mode of action of the CarR_{Ecc} and CarR₃₉₀₀₆ proteins. Our data confirm that the CarR_{Ecc} protein binds to its 3O-C6-HSL ligand in vitro with high affinity, and that the hydrogen bond formed between 3O-C6-HSL and the highly conserved Trp-44 residue is critical for this interaction. The complete abolition of detectable AHL binding in the W44C mutant protein suggests that this key hydrogen bond may be required for the formation or stabilization of additional H-bonds between CarR_{Ecc} residues and the AHL ligand. In vitro, AHL binding induced the CarR_{Ecc} protein to bind to the carA promoter with higher affinity. In the heterologous host E. coli DH5 α , enhanced DNA binding had the twin effect of preventing proteolytic turnover and activating carA transcription. The W44C variant of His6-CarREcc cannot bind to 3O-C6-HSL, and so remains in a low-affinity state, which cannot resist proteolysis or activate carA transcription at physiologically relevant concentrations. The mechanism by which DNA-bound CarR_{Ecc} resists cellular proteolysis is unclear, but must differ significantly from the direct protection afforded to the TraR protein from A. tumefaciens by 3O-C8-HSL (Zhu and Winans, 1999; 2001).

This study has also confirmed the ability of $CarR_{Ecc}$ to bind to target DNA and activate transcription in the absence of AHLs, when overexpressed. This is in stark contrast to other activators of the LuxR family, in which the apo-form had no detectable affinity for target DNA (Qin *et al.*, 2000; Schuster *et al.*, 2004). The window between AHL-dependent and AHL-independent *carA* transcription was narrow, with mild overexpression of CarR_{Ecc} sufficient to activate *carA* transcription. The AHL-independent behaviour of CarR_{Ecc} when overexpressed also demonstrates that care must be taken when attempting to interpret the physiological mechanism of proteins based purely on *in vitro* data and the expression of physiologically artefactual protein concentrations from multicopy plasmid systems.

This study has also revealed that, uniquely, the previously uncharacterized CarR₃₉₀₀₆ protein from *Serratia* 39006 has no detectable affinity *in vitro* for AHL molecules, and that its ability to bind to its target *carA* promoter with high affinity, activate transcription and successfully resist cellular proteolysis is unaffected by AHLs. The results of *in vivo* experiments in the heterologous *E. coli* host closely match those obtained from several genetic studies in *Serratia*, implying that AHL independence is conferred by the CarR₃₉₀₀₆ protein itself, and not by other *Serratia*-specific regulatory factors. High-affinity binding of purified His₆-CarR₃₉₀₀₆ to purified target DNA, in the absence of any other molecule, suggests that CarR₃₉₀₀₆ does not require a ligand to function. Before this study, it had been demonstrated that some QS systems can respond to non-AHL

1128 S. Poulter et al.

molecules, such as *Rhodopseudomonas palustris*, which responds to a *p*-coumaroyl-homoserine lactone derived from lignin (Schaefer *et al.*, 2008). Similarly, OryR from *Xanthomonas oryzae* pv. *oryzae* is activated by undefined plant signals from rice (Ferluga and Venturi, 2009). Other LuxR family proteins have been shown to be inherently transcriptionally active, but are inactivated by cognate AHLs (Schu *et al.*, 2009). In contrast, binding of CarR₃₉₀₀₆ to DNA is neither improved nor attenuated by AHLs, thereby representing the first truly ligand-independent LuxR family protein.

The binding of apo-CarR_{Ecc} and apo-CarR₃₉₀₀₆ to DNA is reminiscent of the 'repressor' class of LuxR proteins, such as EsaR from P. stewartii (Von Bodman et al., 1998). Members of this class are more accurately described as 'apo-functional', as in some cases their competence to bind DNA in the absence of AHLs can result in transcriptional activation (Von Bodman et al., 2003; Schu et al., 2009). Members of this class are inactivated by AHL signals, via a poorly defined mechanism, resulting in derepression (or deactivation) of transcription. A very recent review of LuxR family proteins proposed that these apofunctional LuxR proteins fall into a single phylogenetic clade (Tsai and Winans, 2010). Interestingly, the CarR_{Ecc} and CarR₃₉₀₀₆ activators were identified as the closest relatives of this apo-functional class (Fig. S6). Thus, CarR_{Ecc} and CarR₃₉₀₀₆ may represent evolutionary intermediates between AHL-activated and AHL-inactivated LuxR proteins. Our data show that CarR₃₉₀₀₆ represents a third class of LuxR protein, which is neither activated nor inactivated by AHLs.

Experiments with domain chimeras suggest that the C-terminal DNA-binding domain of CarR₃₉₀₀₆ may be responsible for conferring AHL independence. Attaching this C-terminal domain onto the CarR_{Ecc} N-terminus resulted in high-affinity DNA binding and transcriptional activation, abolishing the need for an AHL signal. The N-terminal domain residues involved in AHL binding are probably no longer selectively advantageous in the AHL-independent CarR₃₉₀₀₆, so the loss of the critical Trp-44 residue may have occurred by neutral drift. In contrast, attachment of the signal-blind CarR₃₉₀₀₆ N-terminal domain onto the CarR_{Ecc} C-terminal domain (which is normally activated by 3O-C6-HSL binding to the N-terminus) resulted in low affinity binding to the *carA* promoter, protease sensitivity and poor transcriptional activation.

The C-terminal DNA-binding domains of CarR_{Ecc} and CarR₃₉₀₀₆ are extremely similar, containing only three amino acid differences within alpha helices α 7, α 8, α 9 and α 10 (Fig. S4). This strong amino acid identity is consistent with the ability of these two proteins to activate transcription from the two *carA* promoters interchangeably (Fig. S5). Interestingly, secondary structure prediction suggests that the extreme C-terminus of CarR₃₉₀₀₆ may contain

an additional short alpha helix, which is not predicted for $CarR_{Ecc}$ or any other LuxR family protein analysed, and which may be functionally significant (Fig. S4). Further studies are required to identify the C-terminal regions that are responsible for the unique mechanism by which the signal-blind CarR₃₉₀₀₆ protein has evolved to overcome the requirement for an AHL ligand.

Experimental procedures

Bacterial strains and culture conditions

Escherichia coli DH5α was grown at 37°C in Luria–broth (LB) at 300 r.p.m. or on LB agar containing 1.5% (w/v) agar. Media were supplemented with ampicillin (Ap, 100 µg ml⁻¹) and tetracycline (Tc, 35 µg ml⁻¹), and growth (OD₆₀₀) was measured as described previously (Poulter *et al.*, 2010). When required, an appropriate amount of isopropyl-β-D-thiogalactopyranoside (IPTG) was added (see *Results*). Synthetic *N*-acyl homoserine lactones were synthesized as previously described (Glansdorp *et al.*, 2004). All experiments were performed in triplicate and plotted as mean ± SD.

DNA manipulation and sequence analysis

Molecular biology techniques and sequencing were performed as described previously (Poulter *et al.*, 2010). Oligonucleotide primers are shown in Table S1. All plasmids were verified by DNA sequencing. Sequence data were analysed using GCG (Genetics Computer Group, University of Wisconsin) and compared with GenBank DNA or non-redundant protein sequence databases using BLAST (Altschul *et al.*, 1997). Multiple sequence alignments were performed using MultAlin (Corpet, 1988), and images were generated with ESPript (Gouet *et al.*, 1999). Secondary structure prediction analysis was performed using PSIpred (McGuffin *et al.*, 2000).

Construction of CarR expression vectors

All proteins expressed in this study contained N-terminal hexahistidine (His₆) tags, and all plasmids are shown in Table 1. CarR expression vectors pSP78 (His₆-CarR_{Ecc}) and pSP79 (His₆-CarR₃₉₀₀₆) were created by PCR cloning of the *carR*_{Ecc} and *carR*₃₉₀₀₆ genes into pQE80L (Qiagen) BamHI and PstI sites, using primers SP277 and SP257, and SP278 and PF67 respectively. For expression of the CarR AHL-binding domains (amino acids 1 to 167), the primers SP277 and SP279 (*carR*_{Ecc}) and SP278 and SP280 (*carR*₃₉₀₀₆) were used to PCR clone the first 501 bp of the *carR* genes into pQE80L BamHI and PstI sites, creating plasmids pSP76 (His₆-CarR_{Ecc})¹⁻¹⁶⁷) and pSP77 (His₆-CarR₃₉₀₀₆¹⁻¹⁶⁷).

Site-directed mutagenesis of CarR proteins

Substitution of residue 44 of CarR_{Ecc} and CarR₃₉₀₀₆ was performed by overlap extension PCR (Warrens *et al.*, 1997). A CarR_{Ecc} W44C variant was created by PCR amplification of the 5' 148 bp of *carR*_{Ecc} using SP277 and the mutagenic primer SP273, and the 3' 618 bp of CarR_{Ecc} using mutagenic
 Table 1. Bacterial strains and plasmids used in this study.

Strain/plasmid	Genotype/phenotype	Reference
Escherichia coli		
BL21/DE3	B strain; F ⁻ <i>ompT hsdS</i> _B (r _B -m _B ⁻) <i>dcm gal</i> λ(DE3[<i>lacl lacUV5</i> -T7 gene 1 ind1 sam7 nin5])	Novagen
DH5α	F⁻, φ80∆dlacZM15, ∆(lacZŸA-argF)U169, endA1, recA1, hsdR17 (rk-mk+), deoR, thi-1, supE44, λ⁻, gyrA96, relA1	Gibco/BRL
Serratia		
ATCC 39006	Wild type	Bycroft <i>et al</i> . (1988)
Erwinia carotovora		
Ecc ATCC 39048	Wild type	Bainton <i>et al.</i> (1992)
Plasmids		
pQE80L	Cloning vector for N-terminal hexahistidine proteins, <i>lacl</i> ^q , Ap ^R	Qiagen
pRW50	Promoterless <i>lacZ</i> fusion reporter plasmid, RK2 replicon, Tc ^R	Lodge et al. (1992)
pSP14	Erwinia carA promoter lacZ fusion (-210 to +127), Tc ^R	This study
pSP76	Hise-CarR _{Ecc} ¹⁻¹⁶⁷ expression vector, derivative of pQE80L, Ap ^R	This study
pSP77	His ₆ -CarR ₃₉₀₀₆ ¹⁻¹⁶⁷ expression vector, derivative of pQE80L, Ap ^R	This study
pSP78	Full size His ₆ -CarR _{Ecc} vector, derivative of pQE80L, Ap ^R	This study
pSP79	Full size His ₆ -CarR ₃₉₀₀₆ vector, derivative of pQE80L, Ap ^R	This study
pSP88	His ₆ -CarR _{39006-Ecc} chimera vector, derivative of pQE80L, Ap ^R	This study
pSP89	His ₆ -CarR _{Ecc.39006} chimera vector, derivative of pQE80L, Ap ^R	This study
pSP90	Full-length His ₆ -CarR _{Ecc} W44C vector, derivative of pQE80L, Ap ^R	This study
pSP91	Full-length His ₆ -CarR ₃₉₀₀₆ C44W vector, derivative of pQE80L, Ap ^R	This study
pSP111	Hise-CarR _{Ecc} ¹⁻¹⁶⁷ W44C vector, derivative of pQE80L, Ap ^R	This study
pTA16	Serratia carA promoter lacZ fusion (-199 to +50), Tc ^R	Gristwood et al. (2008)

primer SP274 and SP257. Using the resulting products as template, PCR amplification with SP277 and SP257 resulted in a spliced 735 bp product, which was cloned into pQE80L BamHI and PstI sites to generate plasmid pSP90. An identical strategy was used for the CarR₃₉₀₀₆ C44W variant plasmid pSP91, using primers SP278 and SP95 (5' end) and SP96 and PF67 (3' end). The CarR_{Ecc} W44C ligand-binding domain (His₆-CarR_{Ecc}¹⁻¹⁶⁷ W44C) was expressed from plasmid pSP111, created by PCR cloning the 5' 501 bp of *carR*_{Ecc} W44C from pSP90 into pQE80L BamHI and PstI sites, using primers SP277 and SP279.

Construction of CarR domain chimeras

Chimera proteins were constructed, in which the CarR₃₉₀₀₆ N-terminal AHL-binding domain (residues 1 to 158) was fused to the CarR_{Ecc} C-terminal DNA-binding domain (residues 159 to 244), and vice versa. The 5' 474 bp of *carR*₃₉₀₀₆ was PCR amplified using primers SP278 and SP299, and the 3' 261 bp of *carR*_{Ecc} amplified using SP300 and SP257. Using the resulting products as template, PCR amplification with SP278 and SP257 resulted in a final 735 bp spliced product in which the gene fragment encoding the CarR₃₉₀₀₆ N-terminal domain was fused to the fragment encoding the CarR_{Ecc} C-terminal domain. An identical strategy was used using primers SP277 and SP307, and primers SP308 and PF67, resulting in a spliced *carR*_{Ecc.39006} PCR product. These products were cloned into pQE80L BamHI and PstI sites to create plasmid pSP88 and pSP89 respectively.

Purification of His6-tagged proteins

CarR proteins were purified from *E. coli* BL21/DE3 carrying plasmids pSP76, pSP77, pSP78, pSP79, pSP90 or pSP111.

5 ml overnight cultures were grown in LB with Ap at 37°C, and used to inoculate 1 l of pre-warmed LB and Ap. Expression cultures were grown at 37°C with shaking at 200 r.p.m. to an OD₆₀₀ of 0.5, then rapidly cooled to 20°C, induced with 1 mM IPTG and incubated overnight at 16°C. His₆-tagged proteins were purified from harvested cells using Ni-NTA resin (Qiagen) as described previously (Gristwood *et al.*, 2008). Elution fractions containing protein were pooled and dialysed overnight against 1 l Dilution Buffer (50 mM NaH₂PO₄/300 mM NaCl/pH 8.0) at 4°C.

carA promoter lacZ fusion experiments

The *Ecc carA* promoter (nucleotides –210 to +127, relative to the transcriptional start site) was PCR cloned with primers SP152 and SP153 into the BamHI and HindIII sites of pRW50 (Lodge *et al.*, 1992) to give plasmid pSP14. The *Serratia carA* promoter (-199 to +50) was previously cloned into pRW50, to create plasmid pTA16 (Gristwood *et al.*, 2008). *E. coli* DH5 α cells carrying pRW50, pSP14 or pTA16, plus pSP78, pSP79, pSP88, pSP89, pSP90 or pSP91, were grown in 5 ml of LB, plus Ap, Tc, IPTG and synthetic AHLs to an OD₆₀₀ of 0.5. Promoter expression (measured as Miller Units) was determined as described previously (Fineran *et al.*, 2005b).

Western blot analysis for CarR proteins

Western blot analysis was performed against bacterial cell samples taken from promoter *lacZ* fusion experiments (normalized to OD_{600} and separated by SDS-PAGE), using a primary mouse monoclonal anti-His antibody (Novagen) and a goat anti-mouse polyclonal HRP conjugated secondary antibody (Sigma).

© 2011 Blackwell Publishing Ltd, Molecular Microbiology, 80, 1120-1131

EMSA

Electrophoretic mobility shift assays experiments were performed with 3' DIG-labelled *carA* promoter fragments from pSP14 and pTA16, using a DIG Gel Shift Kit (Roche). EMSA reaction mixtures (20 μ I) contained the indicated amount of His₆-CarR protein and 1.5 nM of DIG-labelled DNA, in binding buffer [20 mM HEPES, pH 7.6, 1 mM EDTA, 10 mM (NH₄)₂SO₄, 1 mM DTT, 0.02% Tween and 30 mM KCI], 5 μ g ml⁻¹ poly-L-lysine and 50 μ g ml⁻¹ poly[d(A-T)]. Specific competition reactions contained 50-fold excess (75 nM) unlabelled *carA* promoter DNA. An *rsmA* promoter fragment from *Erwinia carotovora* ssp. *atroseptica* SCRI1043 (Bell *et al.*, 2004) was used as a non-specific competitor.

ITC

Isothermal titration calorimetry was performed on a VP-ITC micro-calorimeter (MicroCal) at 30°C. Proteins were dialysed against ITC Buffer (50 mM NaH₂PO₄/300 mM NaCl/1% DMSO/pH 8.0). Synthetic AHLs (50 mM in DMSO) were diluted into Dilution Buffer (50 mM NaH₂PO₄/300 mM NaCl/pH 8.0) to 600 μ M. Standard settings were: 27 injections (2 μ l, 5 μ l, then 25 \times 10 μ l), 120 s initial delay, 30°C, reference power 17, stirring speed 310 r.p.m. Based on the observed stoichiometry of binding, raw data were processed and plotted using a two binding site model (Origin software). Dissociation constants (K_d) were derived from K_a values (K_d = 1/K_a) calculated from the slope of the isotherm curve.

Acknowledgements

We thank members of the Salmond group, Dr M. Welch and Dr L. Evans for useful discussions, P. Sledz for ITC assistance, Dr D. Marsden for ITC conditions, Dr P. Fineran for providing plasmid pTA16 and I. Foulds and A. Rawlinson for technical assistance. This work was supported by the Biotechnology and Biological Sciences Research Council.

References

- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* 25: 3389–3402.
- Bainton, N.J., Stead, P., Chhabra, S.R., Bycroft, B.W., Salmond, G.P., Stewart, G.S., and Williams, P. (1992) N-(3oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in *Erwinia carotovora*. *Biochem J* 288: 997–1004.
- Bell, K.S., Sebaihia, M., Pritchard, L., Holden, M.T., Hyman, L.J., Holeva, M.C., *et al.* (2004) Genome sequence of the enterobacterial phytopathogen *Erwinia carotovora* subsp. *atroseptica* and characterization of virulence factors. *Proc Natl Acad Sci USA* **101**: 11105–11110.
- Bottomley, M.J., Muraglia, E., Bazzo, R., and Carfi, A. (2007) Molecular insights into quorum sensing in the human pathogen *Pseudomonas aeruginosa* from the structure of the virulence regulator LasR bound to its autoinducer. *J Biol Chem* **282**: 13592–13600.

Bycroft, B.W., Maslen, C., Box, S.J., Brown, A., and Tyler,

J.W. (1988) The biosynthetic implications of acetate and glutamate incorporation into (3*R*,5*R*)-carbapenam-3-carboxylic acid and (5*R*)-carbapen-2-em-3-carboxylic acid by *Serratia* sp. *J Antibiot* **41:** 1231–1242.

- Choi, S.H., and Greenberg, E.P. (1992) Genetic evidence for multimerization of LuxR, the transcriptional activator of *Vibrio fischeri* luminescence. *Mol Mar Biol Biotechnol* 1: 408–413.
- Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res* **16**: 10881–10890.
- Cox, A.R., Thomson, N.R., Bycroft, B., Stewart, G.S., Williams, P., and Salmond, G.P. (1998) A pheromoneindependent CarR protein controls carbapenem antibiotic synthesis in the opportunistic human pathogen *Serratia marcescens. Microbiology* **144**: 201–209.
- De Carlo, S., Chen, B., Hoover, T.R., Kondrashkina, E., Nogales, E., and Nixon, B.T. (2006) The structural basis for regulated assembly and function of the transcriptional activator NtrC. *Genes Dev* 20: 1485–1495.
- Ferluga, S., and Venturi, V. (2009) OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic *Xanthomonas oryzae* pv. *oryzae* and rice. *J Bacteriol* **191:** 890–897.
- Fineran, P.C., Slater, H., Everson, L., Hughes, K., and Salmond, G.P. (2005a) Biosynthesis of tripyrrole and betalactam secondary metabolites in *Serratia*: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. *Mol Microbiol* **56**: 1495–1517.
- Fineran, P.C., Everson, L., Slater, H., and Salmond, G.P. (2005b) A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in *Serratia. Microbiology* **151**: 3833–3845.
- Glansdorp, F.G., Thomas, G.L., Lee, J.K., Dutton, J.M., Salmond, G.P., Welch, M., and Spring, D.R. (2004) Synthesis and stability of small molecule probes for *Pseudomonas aeruginosa* quorum sensing modulation. *Org Biomol Chem* **2:** 3329–3336.
- Gouet, P., Courcelle, E., Stuart, D.I., and Metoz, F. (1999) ESPript: analysis of multiple sequence alignments in PostScript. *Bioinformatics* **15:** 305–308.
- Gristwood, T., Fineran, P.C., Everson, L., and Salmond, G.P. (2008) PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative fourcomponent resistance-nodulation-cell-division efflux pump, ZrpADBC, in *Serratia* sp. ATCC 39006. *Mol Microbiol* 69: 418–435.
- Kiratisin, P., Tucker, K.D., and Passador, L. (2002) LasR, a transcriptional activator of *Pseudomonas aeruginosa* virulence genes, functions as a multimer. *J Bacteriol* 184: 4912–4919.
- Lamb, J.R., Patel, H., Montminy, T., Wagner, V.E., and Iglewski, B.H. (2003) Functional domains of the RhIR transcriptional regulator of *Pseudomonas aeruginosa*. *J Bacteriol* **185**: 7129–7139.
- Lodge, J., Fear, J., Busby, S., Gunasekaran, P., and Kamini, N.R. (1992) Broad host range plasmids carrying the *Escherichia coli* lactose and galactose operons. *FEMS Microbiol Lett* **74**: 271–276.

McGowan, S., Sebaihia, M., Jones, S., Yu, B., Bainton, N.,

Chan, P.F., *et al.* (1995) Carbapenem antibiotic production in *Erwinia carotovora* is regulated by CarR, a homologue of the LuxR transcriptional activator. *Microbiology* **141:** 541– 550.

- McGowan, S.J., Sebaihia, M., Porter, L.E., Stewart, G.S., Williams, P., Bycroft, B.W., and Salmond, G.P. (1996) Analysis of bacterial carbapenem antibiotic production genes reveals a novel beta-lactam biosynthesis pathway. *Mol Microbiol* 22: 415–426.
- McGowan, S.J., Sebaihia, M., O'Leary, S., Hardie, K.R., Williams, P., Stewart, G.S., *et al.* (1997) Analysis of the carbapenem gene cluster of *Erwinia carotovora*: definition of the antibiotic biosynthetic genes and evidence for a novel betalactam resistance mechanism. *Mol Microbiol* **26**: 545–556.
- McGowan, S.J., Barnard, A.M., Bosgelmez, G., Sebaihia, M., Simpson, N.J., Thomson, N.R., *et al.* (2005) Carbapenem antibiotic biosynthesis in *Erwinia carotovora* is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. *Mol Microbiol* 55: 526–545.
- McGuffin, L.J., Bryson, K., and Jones, D.T. (2000) The PSIPRED protein structure prediction server. *Bioinformatics* **16:** 404–405.
- Parker, W.L., Rathnum, M.L., Wells, J.S., Jr, Trejo, W.H., Principe, P.A., and Sykes, R.B. (1982) SQ 27,860, a simple carbapenem produced by species of *Serratia* and *Erwinia*. *J Antibiot* 35: 653–660.
- Poulter, S., Carlton, T.M., Su, X., Spring, D.R., and Salmond, G.P. (2010) Engineering of new prodigiosin-based biosensors of *Serratia* for facile detection of short-chain *N*-acyl homoserine lactone quorum-sensing molecules. *Environ Microbiol Rep* 2: 322–328.
- Qin, Y., Luo, Z.Q., Smyth, A.J., Gao, P., Beck von Bodman, S., and Farrand, S.K. (2000) Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. *EMBO J* **19:** 5212–5221.
- Schaefer, A.L., Greenberg, E.P., Oliver, C.M., Oda, Y., Huang, J.J., Bittan-Banin, G., *et al.* (2008) A new class of homoserine lactone quorum-sensing signals. *Nature* **454**: 595–599.
- Schu, D.J., Carlier, A.L., Jamison, K.P., von Bodman, S., and Stevens, A.M. (2009) Structure/function analysis of the *Pantoea stewartii* quorum-sensing regulator EsaR as an activator of transcription. *J Bacteriol* **191**: 7402–7409.
- Schuster, M., Urbanowski, M.L., and Greenberg, E.P. (2004) Promoter specificity in *Pseudomonas aeruginosa* quorum sensing revealed by DNA binding of purified LasR. *Proc Natl Acad Sci USA* **101**: 15833–15839.
- Slater, H., Crow, M., Everson, L., and Salmond, G.P. (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in *Serratia* via both quorum-sensing-dependent and -independent pathways. *Mol Microbiol* **47:** 303–320.
- Thomson, N.R., Crow, M.A., McGowan, S.J., Cox, A., and Salmond, G.P. (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in *Serratia* is under quorum sensing control. *Mol Microbiol* **36:** 539–556.
- Tsai, C.S., and Winans, S.C. (2010) LuxR-type quorumsensing regulators that are detached from common scents. *Mol Microbiol* **77:** 1072–1082.

- Urbanowski, M.L., Lostroh, C.P., and Greenberg, E.P. (2004) Reversible acyl-homoserine lactone binding to purified *Vibrio fischeri* LuxR protein. *J Bacteriol* **186**: 631–637.
- Vannini, A., Volpari, C., Gargioli, C., Muraglia, E., Cortese, R., De Francesco, R., *et al.* (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. *EMBO J* 21: 4393–4401.
- Von Bodman, S.B., Majerczak, D.R., and Coplin, D.L. (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in *Pantoea stewartii* subsp. *stewartii. Proc Natl Acad Sci USA* **95:** 7687–7692.
- Von Bodman, S.B., Ball, J.K., Faini, M.A., Herrera, C.M., Minogue, T.D., Urbanowski, M.L., and Stevens, A.M. (2003) The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription. *J Bacteriol* **185**: 7001–7007.
- Warrens, A.N., Jones, M.D., and Lechler, R.I. (1997) Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. *Gene* 186: 29–35.
- Welch, M., Todd, D.E., Whitehead, N.A., McGowan, S.J., Bycroft, B.W., and Salmond, G.P. (2000) *N*-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in *Erwinia*. *EMBO J* **19**: 631–641.
- Whitehead, N.A., Barnard, A.M., Slater, H., Simpson, N.J., and Salmond, G.P. (2001) Quorum-sensing in Gramnegative bacteria. *FEMS Microbiol Rev* 25: 365–404.
- Yang, M., Giel, J.L., Cai, T., Zhong, Z., and Zhu, J. (2009) The LuxR family quorum-sensing activator MrtR requires its cognate autoinducer for dimerization and activation but not for protein folding. J Bacteriol **191**: 434–438.
- Zhang, R.G., Pappas, T., Brace, J.L., Miller, P.C., Oulmassov, T., Molyneaux, J.M., *et al.* (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. *Nature* **417**: 971–974.
- Zhu, J., and Winans, S.C. (1999) Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters *in vitro* and decreases TraR turnover rates in whole cells. *Proc Natl Acad Sci USA* **96:** 4832–4837.
- Zhu, J., and Winans, S.C. (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. *Proc Natl Acad Sci USA* **98:** 1507–1512.
- Zou, Y., and Nair, S.K. (2009) Molecular basis for the recognition of structurally distinct autoinducer mimics by the *Pseudomonas aeruginosa* LasR quorum-sensing signaling receptor. *Chem Biol* **16**: 961–970.

Supporting information

Additional supporting information may be found in the online version of this article.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.