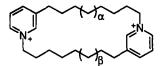


Efficient Synthesis of the Sponge Alkaloids Cyclostellettamines A-F

Jack E. Baldwin, David R. Spring, Catherine E. Atkinson and Victor Lee

The Dyson Perrins Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QY, UK.1

Received 17 July 1998; accepted 3 September 1998


Abstract

The total synthesis of cyclostellettamines A-F is reported. The synthetic cyclostellettamines were reduced to the neutral bis-tetrahydropyridine compounds, and exact mass measurements of these reduced products provided unequivocal evidence for the cyclostellettamine structures. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: alkaloids; macrocycles; marine metabolites; sponges.

1. Introduction

In 1994, Fusetani et al. [1] isolated cyclostellettamines A-F (1-6) from the sponge Stelletta maxima² (Table 1). They were discovered because of their ability to inhibit effectively the binding of methyl quinuclidinyl benzylate to muscarinic acetylcholine receptors. Despite only very small amounts (<1mg) of the natural material being isolated, their structures were determined by a combination of NMR spectroscopy and mass spectrometry. The same group subsequently completed a synthesis of cyclostellettamine C adding credence to their proposed structures [2].

Cyclostellettamines A-F

Cyclostellettamine	α	β	Compound
A:	5	5	(1)
B:	5	6	(2)
C:	6	6	(3)
D:	5	7	(4)
E:	6	7	(5)
F:	7	7	(6)

Table 1.

¹ Email: jack.baldwin@chem.ox.ac.uk; Fax: +44 1865 275632.

² It was reported recently [11] that the original Stelletta maxima sample was contaminated with Haliclona.

The cyclostellettamines consist of two 3-alkylpyridinium units, connected by C₁₂, C₁₃ or C₁₄ alkyl chains. Although structurally simple, they may be biogenetically related to many other more complex sponge metabolites, including the manzamine alkaloids [3-8]. Our continued interest in the biomimetic synthesis of these sponge alkaloids [9,10] prompted us to investigate the synthesis of the cyclostellettamines. Recently Wanner and Koomen [11] have reported the synthesis of cyclostellettamines A-F (1-6). In this paper we report our complementary total synthesis of the cyclostellettamines.

2. Results and discussion

We envisaged that the cyclostellettamines could be assembled by two controlled quaternisations of the pyridine rings from two 3-alkylpyridine subunits (Scheme 1). In order to achieve this (i) one pyridine subunit needs to be in a protected form (e.g. as the N-oxide 7); (ii) the protected pyridine subunit (7) must have a leaving group (X) at the terminal position on its 3-alkyl chain; (iii) the other ("unprotected") pyridine subunit should have a masked leaving group (e.g. a hydroxyl group (8)) at the terminal position on its 3-alkyl chain. Once the first quaternisation has been achieved, deprotection, activation and a second quaternisation would complete the synthesis. This strategy was first demonstrated by Morimoto and Yokoe in the synthesis of haliclamine A [12].

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

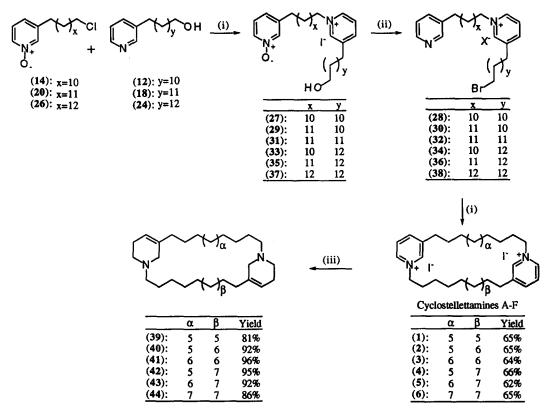
For the C₁₂ alkylpyridine series (Scheme 2(a)), commercially available 11-bromoundecan-1-ol (9) was converted into its tetrahydropyranyl (THP) ether 10 in 96% yield [13]. Treatment of 10 with lithiated 3-methylpyridine [14] gave alkylpyridine 11 (74%). The THP group was removed with dilute hydrochloric acid in methanol to afford alcohol 12 (96%), the required "unprotected/unactivated" subunit. Activation of alcohol 12 was effected with SOCl₂ in 1,4-dioxane and the resultant chloroalkylpyridine 13 was isolated as its hydrochloride salt (99%). We found this process to be extremely convenient because the product was obtained as a crystalline solid which could be stored indefinitely. The free base, obtained from 13 by partitioning between CH₂Cl₂ and aqueous sodium carbonate, was oxidised with mCPBA to give N-oxide 14 (99%), the "protected/activated" subunit.

(25)

BI A OR (ii)
$$V$$
 OR (iv) V CI (v) V CI (vi) V CI (vi) V CI (vi) V CI (vi) V CI (vii) V CI (vii) V CI (vii) V CI (vi) V CI (vii) V CI (viii) V CI (v

Scheme 2.

(26)


Reagents: (i) PPTS, 3,4-dihydro-2*H*-pyran, CH₂Cl₂; (ii) LDA, DMPU, 3-methylpyridine; (iii) 3M aq. HCl, MeOH; (iv) SOCl₂, 1,4-dioxane; (v) 2M aq. NaCO₃, then *m*CPBA, CH₂Cl₂; (vi) Ph₃P, MeCN; (vii) KHMDS then 3-pyridin-3-ylpropanal, THF; (viii) Pd/C, H₂, EtOH.

The C_{13} series of compounds was synthesised from 12-bromododecan-1-ol (15), obtained in 87% yield by monobromination of dodecan-1,12-diol with HBr [15]. Using the same sequence of reactions as described above, 15 was converted into 16 (96%), 17 (87%), 18 (91%), 19 (99%) and 20 (98%) (Scheme 2(b)).

Finally, the C₁₄ alkylpyridine series was synthesised *via* a slightly different route (Scheme 2(c)), since tridecan-1,13-diol was not readily available. Triphenylphosphine and 10 were coupled to give the C₁₁ phosphonium salt 21 (91%) which was used for Wittig olefination of 3-pyridin-3-ylpropanal to furnish 22 in 71% yield [16-18]. The THP group in 22 was removed with dilute hydrochloric acid in methanol to give alcohol 23 (98%). The double bond in 23 was saturated, by hydrogenation over 10% Pd/C, to afford 24 (99%) which was converted to 25 (100%) then 26 (100%) using the previously described protocol.

With the three pyridine subunits in hand, in "unprotected/unactivated" (12, 18 and 24) and "protected/activated" (14, 20 and 26) forms, the final steps in the synthesis were pursued. The requisite hydroxyalkylpyridine and chloroalkylpyridine-N-oxide were heated at reflux in butan-

2-one with sodium iodide (Scheme 3). The resulting mono-quaternised salt was treated with PBr₃ to effect a one-pot deoxygenation of the pyridine-N-oxide [19], and bromination of the alcohol.¹ The hydrobromide salt isolated was treated with solid K₂CO₃ to generate the free base which was immediately used in the macrocyclisation step. The free base was added slowly, using a syringe pump, to a refluxing solution of sodium iodide in butan-2-one, allowing the macrocyclisation to be conducted at a relatively high concentration (final concentration 10mM).

Scheme 3.

Reagents: (i) NaI, butan-2-one, Δ; (ii) PBr₃, CHCl₃ then K₂CO₃; (iii) NaBH₄, MeOH, CH₂Cl₂, -78°C to 0°C.

Thus, as described above, cyclostellettamine A (1) was synthesised by the quaternisation of 12 with 14 to give 27, which was then converted to 28 and this cyclised affording 1 in 65% yield. Reaction of 12 and 20 gave 29 which was converted to cyclostellettamine B (2) (65%) via 30. Cyclostellettamine C (3) was obtained in 64% yield from 18 and 20 via 31 and 32. Bromide 34, prepared from 14 and 24 via 33, was converted into cyclostellettamine D (4) (66%). Reaction of 20 and 24 afforded 35 which was converted into cyclostellettamine E (5)

¹ NMR analysis showed that ca. 10% of the product was present as the primary iodide, resulting from displacement of a leaving group by the iodide counter ion from the mono-quaternised starting material.

(62%) via 36. Finally, macrocyclisation of bromide 38, obtained from 24 and 26 via 37, afforded cyclostellettamine F (6) (65%). All the cyclostellettamines were isolated as their diiodide salts and the yields quoted were calculated over the three steps.

The FAB mass spectra of the synthetic cyclostellettamines showed the [M-I]⁺ ion consistent with literature observations [11]. However, unequivocal proof of the structures 1-6 was obtained by conversion of the cyclostellettamines into uncharged compounds, which were then subjected to mass spectrometry analysis. Thus 1, 2, 3, 4, 5 and 6 were reduced with NaBH₄ to produce the corresponding *bis*-tetrahydropyridine compounds 39 (81%), 40 (92%), 41 (96%), 42 (95%), 43 (92%) and 44 (86%) respectively. HRMS confirmed the identities of 39-44 and hence the structures of 1-6.

3. Conclusion

In summary, we have achieved the total synthesis of cyclostellettamines A-F. The macrocyclisation strategy involving (i) the use of the pyridine-N-oxide as a protected form of the pyridine; and (ii) subsequent one-pot deprotection and activation with PBr₃ was found to be extremely effective. The synthesis utilised butan-2-one as the solvent in quaternisation reactions in place of the more toxic acetonitrile [11]. Moreover, the use of a syringe pump allowed the macrocyclisation to be conducted at relatively high concentrations utilising much less solvent. Finally, reduction of the synthetic cyclostellettamines produced neutral bistetrahydropyridines from which mass spectrometry proved conclusively the structures of compounds 1-6.

4. Experimental

Melting Points were obtained using a Büchi 510 capillary melting point apparatus and are uncorrected. Microanalyses are quoted to the nearest 0.1% for all elements except for hydrogen which is quoted to the nearest 0.05%. Reported atomic percentages are within the error limits of $\pm 0.4\%$. Infrared spectra were recorded on a Perkin-Elmer Paragon 1000 Fourier Transform spectrometer with internal referencing. Absorption maxima (v_{max}) are reported in wavenumbers (cm⁻¹) and the following abbreviations are used: w, weak; m, medium; s, strong; br, broad. Proton magnetic resonance spectra were recorded on Varian Gemini 200 (200MHz), Bruker AC200 (200MHz) and Bruker DPX400 (400MHz) spectrometers. Chemical shifts (δ_{H}) are quoted in ppm and are referenced to the appropriate residual solvent peak. Coupling constants (J) are reported in hertz to the nearest 0.5Hz. Data are reported as follows: chemical shift, integration, multiplicity [br, broad; s, singlet; d, doublet; t, triplet; q, quartet; qui, quintet; m, multiplet; or as a combination of these (e.g. dd, dt, etc.)], coupling constant(s) and assignment. Diastereotopic protons are assigned as X and X', where the 'indicates the lower field proton. Carbon magnetic resonance spectra were recorded on Varian Gemini 200 (50.3MHz), Bruker

AC200 (50.3MHz) and Bruker DPX400 (100.6MHz) spectrometers. Chemical shifts (δ_C) are quoted in ppm to the nearest 0.1ppm (50.3MHz) or 0.01ppm (100.6MHz), and are referenced to the appropriate residual solvent peak. Low resolution mass spectra were recorded on Autospec (FAB/CI), BIO-Q (ES) and Micromass platform (APCI) spectrometers. Only molecular ions, fractions from molecular ions and other major peaks are reported. Reported exact mass values are within the error limits of ± 10 ppm mass units.

Column chromatography was carried out using Janssen silica 0.035-0.070mm or basic Laporte Actal U.G. alumina. Analytical TLC was performed on glass plates pre-coated with Merck silica gel 60 F_{254} or on aluminium sheets pre-coated with neutral aluminium oxide 60 F_{254} (type E). Visualisation was by the quenching of UV fluorescence (λ_{max} =254nm) or by staining with ammonium molybdate (10% w/v in 1M aq. sulfuric acid) or Dragendorff's reagent (0.08% w/v bismuth subnitrate and 2% w/v KI in 3M aq. AcOH). Retention factors (R_f) are quoted to 0.01. Kugelrohr distillations were performed using a Büchi GKR-50 distillation apparatus at the recorded pressure and oven temperature.

Anhydrous CH₂Cl₂, 1,4-dioxane and ⁱPr₂NH were obtained by heating at reflux over calcium hydride followed by distillation under argon. Anhydrous CHCl₃ was obtained by heating at reflux over P₂O₅ followed by distillation under argon. Anhydrous THF was obtained by distillation from sodium/benzophenone ketyl under argon. PE 40-60 was distilled before use and refers to the fraction of light petroleum ether boiling between 40 and 60°C.

ⁿBuLi in hexane (Acros) and KHMDS in toluene (Aldrich) were titrated with 1,3-diphenylacetone-para-toluenesulfonylhydrazone before use. mCPBA was dissolved in CH₂Cl₂, dried over MgSO₄, filtered and concentrated in vacuo, then titrated with KI/Na₂S₂O₃. All other reagents were used as obtained from commercial sources.

For clarity the following numbering system has been consistently used for the pyridine ring system. Where two different pyridine ring systems appear in the same molecule, primed and unprimed locants have been used as shown below:

Synthesis of 1-bromo-11-tetrahydropyran-2-yloxyundecane (10)

A solution of 11-bromoundecan-1-ol (9) (25.0g, 99.5mmol), 3,4-dihydro-2*H*-pyran (13.6ml, 149mmol) and PPTS (250mg, 0.995mmol) in anhydrous CH_2Cl_2 (250ml) was stirred at room temperature for 18 hours. After washing with 2M aq. Na_2CO_3 (100ml) the organic phase was dried over K_2CO_3 , filtered and concentrated *in vacuo*. The residual pale yellow oil was chromatographed (SiO₂; PE 40-60: EtOAc; 96:4) to yield *1-bromo-11-tetrahydropyran-2-yloxyundecane* (10) (32.0g, 96%) as a colourless oil; R_f 0.40 (SiO₂; PE 40-60: EtOAc; 96:4);

 v_{max} (thin film)/cm⁻¹ 2926s, 2854s, 1135m, 1120m, 1078m, 1033m; $δ_H$ (200MHz; CDCl₃) 1.53-1.90 (24H, m, CH₂), 3.30-3.53 (2H, m, OCHH'), 3.39 (2H, t, J7Hz, BrCH₂), 3.66-3.91 (2H, m, OCHH'), 4.56 (1H, dd, J4, 3Hz, OCHO); $δ_C$ (50MHz; CDCl₃) 19.7, 25.5, 26.2, 28.1, 28.7, 29.4, 29.7, 30.7, 32.8, 34.0, 62.3 and 67.6 (12 x CH₂), 98.8 (CH); m/z (CI, NH₃) 337 (MH⁺, 8¹Br, 13%), 335 (MH⁺, 7⁹Br, 27), 270 (27), 268 (29), 102 (DHPOH₂⁺, 87), 85 (DHPH⁺, 100).

Synthesis of 3-(12-tetrahydropyran-2-yloxydodecyl)pyridine (11)

To a solution of Pr₂NH (22.6ml, 161mmol) in THF (100ml) at 0°C in a 500ml two-necked flask, equipped with a magnetic stirrer, constant pressure addition funnel and a rubber septum, was added ⁿBuLi (1.5M, 107ml, 161mmol) in hexane via a syringe. The resulting pale yellow solution was maintained at 0°C for 30 minutes, then treated with DMPU (19.5ml, 161mmol). The bright yellow solution was stirred at 0°C for 15 minutes, then treated over 10 minutes with a solution of 3-methylpyridine (15.7ml, 161mmol) in THF (50ml). After 30 minutes at 0°C, the mixture containing the lithiated 3-methylpyridine was cooled to -78°C and treated over 10 minutes with 1-bromo-11-tetrahydropyran-2-yloxyundecane (10) (18.0g, 53.8mmol) in THF (50ml). The resulting solution was stirred for 18 hours, being allowed to gradually warm to room temperature, and quenched with sat. aq. NH4Cl (50ml) and water (50ml). The two-phase mixture was separated, and the aq. phase extracted with EtOAc (2 x 100ml). The combined organic extracts were dried over MgSO₄, filtered and concentrated in vacuo to give a yellow oil. Flash chromatography (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 95:5:3) yielded 3-(12tetrahydropyran-2-yloxydodecyl)pyridine (11) (13.8g, 74%) as a pale yellow oil; R_f 0.27 (basewashed SiO₂; PE 40-60: EtOAc: Et₃N; 95:5:3); v_{max} (thin film)/cm⁻¹ 2926s, 2854s, 1575m, 1466m, 1421m, 1352m, 1200m, 1121m, 1078m, 1033m, 714m; δ_H (200MHz; CDCl₃) 1.25 (18H, br s, CH₂), 1.52-1.67 (8H, m, pyCH₂CH₂, CH₂CH₂O and O₂CHCH₂CH₂CH₂CH₂), 2.58 (2H, t, J7.5Hz, pyCH₂), 3.31-3.53 (2H, m, OCHH'), 3.66-3.89 (2H, m, OCHH'), 4.56 (1H, pseudo t, J3Hz, O₂CH), 7.17 (1H, dd, J7.5, 5Hz, C(5)H), 7.46 (1H, br d, J7.5Hz, C(4)H), 8.40-8.43 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 19.7, 25.5, 26.2, 29.1, 29.4, 29.5, 29.7, 30.7, 31.1, 33.0, 62.3 and 67.6 (12 x CH_2), 98.8, 123.1 and 135.7 (3 x CH), 137.9 (quaternary), 147.1 and 149.9 (2 x CH); m/z (APCI) 348 (MH+, 47%), 264 ([MH₂-THP]+, 100); HRMS found 348.2903, C₂₂H₃₈NO₂ (MH⁺) requires 348.2903.

Synthesis of 12-pyridin-3-yldodecan-1-ol (12)

A solution of 3-(12-tetrahydropyran-2-yloxydodecyl)pyridine (11) (11.8g, 33.9mmol) and 3M aq. HCl (22.6ml, 67.8mmol) in MeOH (125ml) was stirred at room temperature for 15 hours. The mixture was concentrated *in vacuo* and basified with 2M aq. KOH (until pH=10). The aq. solution was extracted with EtOAc (3 x 50ml) and the organic phases were combined, dried over K₂CO₃, filtered and concentrated *in vacuo* to afford a yellow oil which slowly crystallised. Flash chromatography (SiO₂; PE 40-60: EtOAc: Et₃N; 70:20:10) yielded 12-

pyridin-3-yldodecan-1-ol (12) (8.84g, 99%) as white crystals. The solid was recrystallised from PE 40-60: EtOAc to give 12-pyridin-3-yldodecan-1-ol (12) (8.58g, 96%) as white crystals; m.p. 51-52°C (lit. [11] m.p. 48-50°C); R_f 0.23 (SiO₂; PE 40-60: EtOAc: Et₃N; 70:20:10); (Found: C, 77.7; H, 11.45; N, 5.2. $C_{17}H_{29}NO$ requires C, 77.5; H, 11.1; N, 5.3%); v_{max} (KBr disk)/cm⁻¹ 3332s br (OH), 2917s, 1578m, 1470m, 1423m, 1335m, 1070m, 1028m, 803m, 714s; δ_H (200MHz; CDCl₃) 1.27 (16H, br s, CH₂), 1.51-1.61 (5H, m, pyCH₂CH₂ and CH₂CH₂OH), 2.61 (2H, t, J7.5Hz, pyCH₂), 3.65 (2H, t, J6.5Hz, CH₂OH), 7.21 (1H, dd, J7.5, 5Hz, C(5)H), 7.50 (1H, br d, J7.5Hz, C(4)H), 8.41-8.45 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 25.7, 29.0, 29.3, 29.5, 31.0, 32.8, 32.9 and 62.5 (8 x CH₂), 123.5 and 136.2 (2 x CH), 138.3 (quaternary), 147.1 and 149.9 (2 x CH); m/z (APCl) 264 (MH+, 100%), 246 ([M-OH]+, 24); HRMS found 264.2336, $C_{17}H_{30}NO$ (MH+) requires 264.2327.

Synthesis of 3-(12-chlorododecyl)pyridinium chloride (13)

A two-necked round-bottomed flask, equipped with a magnetic stirrer bar, reflux condenser and a pressure equalised dropping funnel was charged with SOCl₂ (1.00ml, 13.7mmol) at 0°C. 12-Pyridin-3-yldodecan-1-ol (12) (3.00g, 11.4mmol) in 1,4-dioxane (10ml) was added over 10 minutes [CAUTION: SO₂ gas evolved]. Once the addition was complete the ice bath was removed and the mixture stirred for 1 hour. After this time EtOH (10ml) was added and the mixture heated at reflux for 5 minutes. The solution was filtered while hot, allowed to cool and concentrated *in vacuo* to give white crystals, which were recrystallised from acetone: EtOH to give 3-(12-chlorododecyl)pyridinium chloride (13) (3.59g, 99%) as white crystals; m.p. 111-112°C; (Found: C, 64.2; H, 9.3; N, 4.3. C₁₇H₂₉Cl₂N requires C, 64.1; H, 9.2; N, 4.4%); R_f 0.58 (SiO₂; CHCl₃: EtOAc; 9:1); δ_H (200MHz; CDCl₃) 1.11 (16H, br s, CH₂), 1.46-1.66 (4H, m, pyCH₂CH₂ and CH₂CH₂Cl), 2.71 (2H, t, J7.5Hz, pyCH₂), 3.37 (2H, t, J6.5Hz, CH₂Cl), 7.86 (1H, dd, J8, 6Hz, C(5)H), 8.19 (1H, d, J8Hz, C(4)H), 8.53 (1H, s, C(2)H), 8.63 (1H, d, J6Hz, C(6)H); δ_C (50MHz; CDCl₃) 26.7, 28.7*, 29.0, 29.2, 30.2, 32.5, 32.6 and 45.1 (9 x CH₂), 126.9, 138.3 and 140.0 (3 x CH), 143.0 (quaternary), 145.6 (CH); *at this resonance two signals can be resolved; m/z (APCI) 284 ([M-Cl]+, ³⁷Cl, 49%), 282 ([M-Cl]+, ³⁵Cl, 100).

3-(12-Chlorododecyl)pyridine

3-(12-Chlorododecyl)pyridinium chloride (13) was neutralised by being dissolved in CH₂Cl₂ and washed with 2M aq. Na₂CO₃. The aq. phase was extracted with CH₂Cl₂ and the organic phases were combined, dried over K₂CO₃, filtered and concentrated *in vacuo* to afford 3-(12-chlorododecyl)pyridine (quant.) as a colourless oil; R_f 0.44 (SiO₂; PE 40-60: EtOAc; 1:1; UV); v_{max} (thin film)/cm⁻¹ 2926s, 2854s, 1575m, 1478m, 1465m, 1422m, 1026m, 714m; δ_H (200MHz; CDCl₃) 1.28 (16H, br s, CH₂), 1.56-1.77 (4H, m, pyCH₂CH₂ and CH₂CH₂Cl), 2.59 (2H, t, J7.5Hz, pyCH₂), 3.51 (2H, t, J6.5Hz, CH₂Cl), 7.18 (1H, dd, J8, 5Hz, C(5)H), 7.47 (1H, d pseudo t, J8, 2Hz, C(4)H), 8.40-8.43 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 26.8,

28.8, 29.1, 29.5, 31.1, 32.6, 33.0 and 45.2 (8 x $\underline{C}H_2$), 123.2 and 135.7 (2 x $\underline{C}H$), 137.9 (quaternary), 147.1 and 149.9 (2 x $\underline{C}H$).

Synthesis of 3-(12-chlorododecyl)pyridine-N-oxide (14)

To a stirred solution of 3-(12-chlorododecyl)pyridine (1.49g, 5.27mmol) in CH₂Cl₂ (40ml) at 0°C was added *m*CPBA (89% active, 1.12g, 5.79mmol). The solution was stirred for 1 hour and then concentrated *in vacuo* behind a safety screen at 15°C. Flash chromatography (Al₂O₃; CH₂Cl₂: MeOH; 98:2) followed by concentration *in vacuo* and storage under high vacuum afforded 3-(12-chlorododecyl)pyridine-N-oxide (14) (1.55g, 99%) as a hygroscopic white solid; R_f 0.63 (Al₂O₃; CH₂Cl₂: MeOH; 98:2; UV); v_{max} (CHCl₃)/cm⁻¹ 2924s, 2853s, 1604m, 1488m, 1468m, 1436m, 1269m, 1158m, 1015m; δ_H (200MHz; CDCl₃) 1.28 (16H, br s, CH₂), 1.59-1.76 (4H, m, pyCH₂CH₂ and CH₂CH₂Cl), 2.65 (2H, t, *J*7.5Hz, pyCH₂), 3.52 (2H, t, *J*6.5Hz, CH₂Cl), 7.45-7.47 (2H, m, C(4)H and C(5)H), 8.16-8.21 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 26.5, 28.5, 28.6, 29.0, 29.2, 30.2, 32.0, 32.3 and 44.3 (9 x CH₂), 126.1, 129.9, 136.4 and 138.4 (4 x CH), 142.8(quaternary); m/z (APCI) 300 (MH+, ³⁷Cl, 33%), 298 (MH+, ³⁵Cl, 100); HRMS found 298.1947, C₁₇H₂₉ClNO (MH+, ³⁵Cl) requires 298.1938.

Synthesis of 1-bromo-12-tetrahydropyran-2-yloxydodecane (16)

The title compound was synthesised similarly to 10, using 12-bromododecan-1-ol (15) (31.3g, 118mmol), 3,4-dihydro-2*H*-pyran (16.2ml, 177mmol) and PPTS (297mg, 1.18mmol) in anhydrous CH₂Cl₂ (300ml) to yield *1-bromo-12-tetrahydropyran-2-yloxydodecane* (16) (39.6g, 96%) as a colourless oil; R_f 0.42 (SiO₂; PE 40-60: Et₂O; 9:1); v_{max} (thin film)/cm⁻¹ 2927s, 2854s, 1465m, 1200m, 1135m, 1120m, 1078m, 1034m; δ_H (200MHz; CDCl₃) 1.24 (18H, br s, CH₂), 1.35-1.58 (6H, m, CH₂CH₂O and O₂CHCH₂CH₂CH₂O, 1.72-1.85 (2H, m, BrCH₂CH₂), 3.28-3.51 (2H, m, OCHH'), 3.37 (2H, t, *J*7Hz, BrCH₂), 3.64-3.89 (2H, m, OCHH'), 4.54 (1H, pseudo t, *J*3.5Hz, OCHO); δ_C (50MHz; CDCl₃) 19.6, 25.5, 26.2, 28.1, 28.7, 29.5, 29.7, 30.7, 32.8, 33.9, 62.2 and 67.6 (12 x CH₂), 98.7 (CH); m/z (CI, NH₃) 350 (MH⁺, 8¹Br, 13%), 348 (MH⁺, 7⁹Br, 16), 102 (DHPOH₂⁺, 72), 85 (DHPH⁺, 100).

Synthesis of 3-(13-tetrahydropyran-2-yloxytridecyl)pyridine (17)

The title compound was synthesised similarly to 11, using i Pr₂NH (29.1ml, 207mmol), n BuLi (2.5M, 82.9ml, 207mmol) in hexane, DMPU (25.1ml, 207mmol), 3-methylpyridine (20.2ml, 207mmol) and 1-bromo-12-tetrahydropyran-2-yloxydodecane (16) (24.1g, 69.1mmol) in THF (250ml) to yield 3-(13-tetrahydropyran-2-yloxytridecyl)pyridine (17) (21.7g, 87%) as a pale yellow oil; R_f 0.28 (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 95:5:3); v_{max} (thin film)/cm⁻¹ 2925s, 2854s, 1574m, 1466m, 1422m, 1352m, 1200m, 1120m, 1078m, 1034m, 714m; δ_H (200MHz; CDCl₃) 1.24 (20H, br s, CH₂), 1.51-1.68 (8H, m, pyCH₂CH₂, CH₂CH₂O

and O₂CHCH₂CH₂CH₂), 2.57 (2H, t, J7.5Hz, pyCH₂), 3.30-3.52 (2H, m, OCHH'), 3.65-3.90 (2H, m, OCHH'), 4.55 (1H, pseudo t, J3.5Hz, O₂CH), 7.16 (1H, dd, J8, 5Hz, C(5)H), 7.46 (1H, d, J7.5Hz, C(4)H), 8.39-8.42 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 19.7, 25.5, 26.2, 29.1, 29.4, 29.6, 29.7, 30.7, 31.1, 33.0, 62.3 and 67.6 (12 x CH₂), 98.8, 123.1 and 135.7 (3 x CH), 137.9 (quaternary), 147.1 and 150.0 (2 x CH); m/z (APCI) 362 (MH+, 100%), 278 ([MH₂-THP]+, 40); HRMS found 362.3069, C₂₃H₄₀NO₂ (MH+) requires 362.3059.

Synthesis of 13-pyridin-3-yltridecan-1-ol (18)

The title compound was synthesised similarly to 12, using 3-(13-tetrahydropyran-2-yloxytridecyl)pyridine (17) (21.5g, 59.6mmol) and 3M aq. HCl (40ml, 119mmol) in MeOH (150ml) to yield 13-pyridin-3-yltridecan-1-ol (18) (15.0g, 91%) as white crystals. The solid was recrystallised from PE 40-60: EtOAc; m.p. 48-50°C (lit. [2] m.p. 44-47°C); R_f 0.25 (SiO₂; PE 40-60: EtOAc: Et₃N; 60:40:5); (Found: C, 78.1; H, 11.6; N, 4.7. $C_{18}H_{31}NO$ requires C, 77.9; H, 11.3; N, 5.1%); v_{max} (KBr disk)/cm⁻¹ 3271m br (OH), 2924s, 2852s, 1575m, 1467m, 1423m, 1074m, 1026m; δ_H (200MHz; CDCl₃) 1.14 (18H, br s, C_{H_2}), 1.45-1.58 (4H, m, pyCH₂CH₂ and C_{H_2} CH₂OH), 2.47 (2H, t, J7.5Hz, pyCH₂), 3.51 (2H, t, J6.5Hz, CH₂OH), 4.32 (1H, s, OH), 7.08 (1H, dd, J7.5, 5Hz, C(5)H), 7.37 (1H, d, J7.5Hz, C(4)H), 8.26-8.33 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 25.7, 28.9, 29.2, 29.4, 30.9, 32.7, 32.8 and 62.6 (8 x CH₂), 123.4 and 136.1 (2 x CH), 138.2 (quaternary), 147.1 and 149.9 (2 x CH); m/z (APCI) 278 (MH+, 100%); HRMS found 278.2484, $C_{18}H_{32}NO$ (MH+) requires 278.2484.

Synthesis of 3-(13-chlorotridecyl)pyridinium chloride (19)

The title compound was synthesised similarly to 13, using SOCl₂ (2.48ml, 34.0mmol) and 13-pyridin-3-yltridecan-1-ol (18) (7.87g, 28.4mmol) in 1,4-dioxane (40ml) to give 3-(13-chlorotridecyl)pyridinium chloride (19) (9.35g, 99%) as a white powder; m.p. 83-84°C; (Found: C, 64.9; H, 9.5; N, 4.1. $C_{18}H_{31}Cl_2N$ requires C, 65.1; H, 9.4; N, 4.2%); δ_H (200MHz; CDCl₃) 1.01 (18H, br s, C $_H$ 2), 1.44-1.54 (4H, m, pyC $_H$ 2 $_H$ 2 and C $_H$ 2Cl), 2.64 (2H, t, 17.5Hz, pyC $_H$ 2), 3.28 (2H, t, 16.5Hz, C $_H$ 2Cl), 7.84 (1H, dd, 18, 6Hz, C(5) $_H$ 1), 8.14 (1H, d, 18Hz, C(4) $_H$ 1), 8.47 (1H, s, C(2) $_H$ 1), 8.56 (1H, d, 16Hz, C(6) $_H$ 1); δ_C (50MHz; CDCl₃) 26.6, 28.6, 28.7, 29.0, 29.2, 30.2, 32.4, 32.5 and 45.0 (9 x $_H$ 2), 126.9, 138.2 and 139.8 (3 x $_H$ 4), 142.9 (quaternary), 145.7 ($_H$ 4H); m/z (APCl) 298 ([M-Cl]+, 37Cl, 44%), 296 ([M-Cl]+, 35Cl, 100).

3-(13-Chlorotridecyl)pyridine

3-(13-Chlorotridecyl)pyridinium chloride (19) was neutralised, in the same way as 13, to afford 3-(13-chlorotridecyl)pyridine (quant.) as a colourless oil; R_f 0.44 (SiO₂; PE 40-60: Et₂O; 1:1); v_{max} (thin film)/cm⁻¹ 2926s, 2854s, 1575m, 1478m, 1465m, 1422m, 1026m, 714m; δ_H (200MHz; CDCl₃) 1.24-1.43 (18H, br m, CH₂), 1.52-1.57 (2H, m, pyCH₂CH₂), 1.70 (2H,

pseudo qui, J6.5Hz, CH_2CH_2Cl), 2.57 (2H, t, J7.5Hz, py CH_2), 3.50 (2H, t, J6.5Hz, CH_2Cl), 7.17 (1H, dd, J8, 5Hz, C(5)H), 7.46 (1H, d pseudo t, J8, 1.5Hz, C(4)H), 8.37-8.41 (2H, m, C(2)H and C(6)H); δ_C (50MHz; $CDCl_3$) 26.8, 28.8, 29.1, 29.4, 29.5, 31.1, 32.6, 33.0 and 45.1 (9 x CH_2), 123.2 and 135.7 (2 x CH_2), 137.9 (quaternary), 147.1 and 149.9 (2 x CH_2).

Synthesis of 3-(13-chlorotridecyl)pyridine-N-oxide (20)

The title compound was synthesised similarly to 14, using 3-(13-chlorotridecyl)pyridine (3.00g, 10.2mmol) and mCPBA (89% active, 1.97g, 10.2mmol) in CH₂Cl₂ (40ml) to afford 3-(13-chlorotridecyl)pyridine-N-oxide (20) (3.10g, 98%) as a white solid; m.p. 62-63°C; R_f 0.67 (Al₂O₃; CH₂Cl₂: MeOH; 98:2); v_{max} (CHCl₃)/cm⁻¹ 2917s, 2850s, 1472s, 1421m, 1262s, 1152s, 1014m, 718s; δ_{H} (200MHz; CDCl₃) 1.16-1.35 (18H, br m, CH₂), 1.47-1.54 (2H, m, pyCH₂CH₂), 1.66 (2H, pseudo qui, J7Hz, CH₂CH₂Cl), 2.47 (2H, t, J7.5Hz, pyCH₂), 3.42 (2H, t, J6.5Hz, CH₂Cl), 7.01-7.16 (2H, m, C(4)H and C(5)H), 7.95-7.99 (2H, m, C(2)H and C(6)H); δ_{C} (50MHz; CDCl₃) 26.7, 28.8, 29.2, 29.3, 29.4, 30.2, 32.5, 32.6 and 45.1 (9 x CH₂), 125.4, 126.7, 136.6 and 138.9 (4 x CH), 141.7(quaternary); m/z (APCl) 314 (MH⁺, 3⁷Cl, 34%), 312 (MH⁺, 3⁵Cl, 100); HRMS found 312.2095, C₁₈H₃₁ClNO (MH⁺, 3⁵Cl) requires 312.2094.

Synthesis of triphenyl-11-tetrahydropyran-2-yloxyundecylphosphonium bromide (21)

A solution of 1-bromo-11-tetrahydropyran-2-yloxyundecane (10) (15.0g, 44.7mmol) and Ph₃P (11.7g, 44.7mmol) in MeCN (100ml) was heated at reflux for 48h under argon. The solution was then concentrated *in vacuo* and chromatographed (SiO₂; CH₂Cl₂: MeOH; 95:5) to yield *triphenyl-11-tetrahydropyran-2-yloxyundecylphosphonium bromide* (21) (24.4g, 91%) as a colourless oil; R_f 0.23 (SiO₂; CH₂Cl₂: MeOH; 95:5); v_{max} (thin film)/cm⁻¹ 2927s, 2854s, 1587m, 1479s, 1438s, 1114s, 1077m, 1033s, 996m, 750m, 724s, 680s; δ_H (200MHz; CDCl₃) 1.13-1.75 (24H, br m, CH₂), 3.26-3.75 (6H, m, PCH₂ and CH₂OCHOCH₂), 4.47 (1H, dd, J4, 2.5Hz, OCHO), 7.58-7.78 (15H, m, phenyl CH); δ_C (50MHz; CDCl₃) 19.7 and 22.4 (2 x CH₂), 22.6 (d, J50Hz, C1), 25.4, 25.6, 26.1, 28.9, 29.0, 29.3, 29.6, 30.5, 30.7, 62.3 and 67.6 (11 x CH₂), 98.8 (CH), 118.1 (d, J86Hz, quaternary), 130.3, 130.6, 133.4, 133.6 and 135.0 (5 x CH); m/z (APCI) 517 ([M-Br]+, 63%), 373 (36), 263 (100).

Synthesis of (Z)-3-(14-tetrahydropyran-2-yloxytetradec-3-enyl)pyridine (22)

A solution of triphenyl-11-tetrahydropyran-2-yloxyundecylphosphonium bromide (21) (21.7g, 36.4mmol) in THF (250ml) under argon was cooled to -78°C and a solution of 0.5M KHMDS in toluene (72.7ml, 36.4mmol) was added dropwise. The mixture was allowed to warm to room temperature over 1 hour to give a red solution. The mixture was cooled again to -78°C and a solution of 3-pyridin-3-ylpropanal (4.10g, 30.3mmol) in THF (20ml) was added via a cannula. The mixture was stirred at -78°C for 5 minutes and then allowed to warm to

room temperature over 2 hours. Water (100ml) was added to the black solution and the two yellow layers which formed were separated. The aq. layer was extracted with CH₂Cl₂ (2 x 100ml), dried with Na₂SO₄, filtered and concentrated in vacuo to give a yellow solid. Flash chromatography (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 95:5:3) yielded (Z)-3-(14tetrahydropyran-2-yloxytetradec-3-enyl)pyridine (22) (8.04g, 71%, Z:E; 50:1 by proton NMR) as a colourless oil; R_f 0.27 (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 95:5:3; ammonium molybdate and UV); v_{max} (thin film)/cm⁻¹ 2925s, 2853s, 1574m, 1478m, 1422m, 1352m, 1200m, 1121m, 1078m, 1032m, 714m; δ_H (400MHz; C_6D_6) 1.14-1.41 (16H, br m, C_{H2}), 1.53-1.64 (6H, m, CH₂CH₂O and O₂CHCH₂CH₂CH₂CH₂), 1.82-1.89 (2H, m, py(CH₂)₂CH=CHCH₂), 2.12-2.20 (2H, m, pyCH₂CH₂), 2.34 (2H, t, J7.5Hz, pyCH₂), 3.28-3.41 (2H, m, OCHH'), 3.76-3.82 (2H, m, OCHH'), 4.57 (1H, pseudo t, J3.5Hz, O_2CH), 5.23-5.30 (1H, m, $py(CH_2)_2CH=CH)$, 5.34-5.40 (1H, m, $py(CH_2)_2CH=CH)$, 6.78 (1H, dd, J7.5, 4.5Hz, C(5)H), 7.04 (1H, d pseudo t, J7.5, 2Hz, C(4)H), 8.42 (1H, dd, J4.5, 1.5Hz, C(6)H), 8.47 (1H, d, J2Hz, C(2)H); δ_C (50MHz; C_6D_6) 19.7, 26.1, 26.9, 27.6, 29.1, 29.7, 30.0, 30.4, 31.2, 33.2, 61.6 and 67.6 (12 x CH₂), 98.6, 123.1, 128.3, 131.4 and 135.4 (5 x CH), 137.1 (quaternary), 147.9 and 150.7 (2 x CH); m/z (APCI) 374 (MH+, 24%), 290 ([MH₂-THP]+, 100); HRMS found 374.3059, C₂₄H₄₀NO₂ (MH⁺) requires 374.3059.

Synthesis of (Z)-14-pyridin-3-yltetradec-11-en-1-ol (23)

The title compound was synthesised similarly to 12, using (*Z*)-3-(14-tetrahydropyran-2-yloxytetradec-3-enyl)pyridine (22) (7.38g, 19.8mmol) and 3M aq. HCl (13.2ml, 39.5mmol) in MeOH (100ml)to yield (*Z*)-14-pyridin-3-yltetradec-11-en-1-ol (23) (5.62g, 98%) as a colourless oil; R_f 0.22 (SiO₂; PE 40-60: EtOAc: Et₃N; 70:20:10); v_{max} (thin film)/cm⁻¹ 3339m br (OH), 3006m, 2925s, 2854s, 1579m, 1479m, 1424m, 1059m, 1030m, 714m; δ_H (200MHz; C_6D_6) 1.22-1.57 (14H, m, C_{H_2}), 1.60-1.71 (2H, m, C_{H_2} CH₂OH), 1.88 (2H, br d, *J*6.5Hz, py(CH₂)₂CH=CHCH₂), 2.14 (2H, pseudo q, *J*7Hz, pyCH₂CH₂), 2.31 (2H, t, *J*7Hz, pyCH₂), 3.70 (2H, t, *J*6.5Hz, C_{H_2} OH), 4.08 (1H, br s, OH), 5.21-5.47 (2H, m, C_{H_2} CH), 6.75 (1H, dd, *J*8, 5Hz, C_{H_2} CH); δ_C (50MHz; δ_C (50MHz; δ_C (21, 29.1, 29.6, 30.0, 30.1, 30.2, 33.2, 33.6 and 62.5 (10 x CH₂), 123.4, 128.2, 131.5 and 135.9 (4 x CH), 137.4 (quaternary), 147.6 and 150.4 (2 x CH); m/z (APCI) 290 (MH+, 100%), 272 (16); HRMS found 290.2489, C_{19} H₃₂NO (MH+) requires 290.2484.

Synthesis of 14-pyridin-3-yltetradecan-1-ol (24)

To a solution of (Z)-14-pyridin-3-yltetradec-11-en-1-ol (23) (4.30g, 14.9mmol) in EtOH (50ml) was added 10% Pd-C (430mg, 10% w/w) and the mixture stirred under a hydrogen atmosphere for 10 hours at room temperature. The reaction mixture was filtered through a pad of Celite® and the filtrate was concentrated in vacuo to give 14-pyridin-3-yltetradecan-1-ol

(24) (4.31g, 100%) as a white powder. The powder was recrystallised from PE 40-60: EtOAc to afford 14-pyridin-3-yltetradecan-1-ol (24) (4.03g, 93%) as white crystals; m.p. 61-62°C (lit. [11] m.p. 57-59°C); R_f 0.33 (SiO₂; PE 40-60: EtOAc: Et₃N; 70:20:10); (Found: C, 78.0; H, 11.65; N, 4.7. C₁₉H₃₃NO requires C, 78.3; H, 11.4; N, 4.8%); v_{max} (CHCl₃)/cm⁻¹ 3330m br (OH), 2915s, 2848s, 1578m, 1463s, 1424s, 1070s, 755s, 715s, 668s; δ_{H} (200MHz; CDCl₃) 1.22 (20H, br s, CH₂), 1.47-1.57 (4H, m, pyCH₂CH₂ and CH₂CH₂OH), 2.56 (2H, t, J7.5Hz, pyCH₂), 3.02 (1H, br s, OH), 3.60 (2H, t, J6.5Hz, CH₂OH), 7.17 (1H, dd, J7.5, 5Hz, C(5)H), 7.46 (1H, br d, J8Hz, C(4)H), 8.35-8.38 (2H, m, C(2)H and C(6)H); δ_{C} (50MHz; CDCl₃) 25.8, 29.1, 29.3, 29.5, 29.6, 31.1, 32.8, 32.9 and 62.6 (9 x CH₂), 123.3 and 135.9 (2 x CH), 138.0 (quaternary), 146.9 and 149.7 (2 x CH); m/z (APCl) 292 (MH+, 100%), 274 (16); HRMS found 292.2640, C₁₉H₃₄NO (MH+) requires 292.2640.

Synthesis of 3-(14-chlorotetradecyl)pyridinium chloride (25)

The title compound was synthesised similarly to 13, using SOCl₂ (0.30ml, 4.12mmol) and 14-pyridin-3-yltetradecan-1-ol (24) (1.00g, 3.43mmol) in 1,4-dioxane (5ml) to give 3-(14-chlorotetradecyl)pyridinium chloride (25) (1.19g, 100%) as white crystals; m.p. 115-116°C; (Found: C, 66.1; H, 9.9; N, 4.1. $C_{19}H_{33}Cl_2N$ requires C, 65.9; H, 9.6; N, 4.0%); δ_H (200MHz; CDCl₃) 1.16 (20H, br s, C $_H^2$), 1.57-1.69 (4H, m, pyC $_H^2$ C $_H^2$ 2 and C $_H^2$ CCl), 2.77 (2H, t, J7.5Hz, pyC $_H^2$ 2), 3.43 (2H, t, J6.5Hz, C $_H^2$ Cl), 7.89 (1H, dd, J8, 5.5Hz, C(5) $_H^2$ 4), 8.22 (1H, d, J8Hz, C(4) $_H^4$ 4), 8.58 (1H, s, C(2) $_H^4$ 4), 8.67 (1H, d, J5.5Hz, C(6) $_H^4$ 4); δ_C (50MHz; CDCl₃) 26.7, 28.7, 29.0, 29.2, 29.3, 30.2, 32.4, 32.6 and 45.1 (9 x C $_H^2$ 2), 127.0, 138.5 and 140.3 (3 x C $_H^2$ 4), 143.3 (quaternary), 145.8 (C $_H^2$ 4); $m/_Z$ (APCI) 312 ([M-Cl]+, $_H^3$ 7Cl, 48%), 310 ([M-Cl]+, $_H^3$ 8Cl, 100).

3-(14-Chlorotetradecyl)pyridine

3-(14-Chlorotetradecyl)pyridinium chloride (25) was neutralised, in the same way as 13, to afford 3-(14-Chlorotetradecyl)pyridine (quant.) as a colourless oil; R_f 0.43 (SiO₂; PE 40-60: Et₂O; 1:1); v_{max} (thin film)/cm⁻¹ 2927s, 2854s, 1574m, 1478m, 1464m, 1422m, 1026m, 714m; δ_H (200MHz; CDCl₃) 1.25-1.44 (20H, br m, CH₂), 1.57-1.64 (2H, m, pyCH₂CH₂), 1.76 (2H, pseudo qui, J6.5Hz, CH₂CH₂Cl), 2.59 (2H, t, J7.5Hz, pyCH₂), 3.52 (2H, t, J6.5Hz, CH₂Cl), 7.19 (1H, dd, J8, 5Hz, C(5)H), 7.48 (1H, d pseudo t, J8, 2Hz, C(4)H), 8.40-8.44 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 26.9, 28.9, 29.1, 29.5, 29.6, 31.1, 32.6, 33.0 and 45.2 (9 x CH₂), 123.2 and 135.7 (2 x CH), 138.0 (quaternary), 147.1 and 149.9 (2 x CH).

Synthesis of 3-(14-chlorotetradecyl)pyridine-N-oxide (26)

The title compound was synthesised similarly to 14, using 3-(14-chlorotetradecyl)pyridine (390mg, 1.25mmol) and mCPBA (89% active, 243mg, 1.25mmol) in CH₂Cl₂ (20ml)to afford

3-(14-chlorotetradecyl)pyridine-N-oxide (26) (408mg, 100%) as a hygroscopic white solid; R_f 0.44 (Al₂O₃; CH₂Cl₂: MeOH; 99:1); v_{max} (CHCl₃)/cm⁻¹ 2925s, 2853s, 1604m, 1482s, 1466m, 1438m, 1272m, 1159m, 1016m, 731m; δ_H (200MHz; CDCl₃) 1.06 (20H, br s, CH₂), 1.35-1.58 (2H, m, pyCH₂CH₂), 1.56 (2H, pseudo qui, J7Hz, CH₂CH₂Cl), 2.38 (2H, t, J7.5Hz, pyCH₂), 3.32 (2H, t, J6.5Hz, CH₂Cl), 6.91-7.08 (2H, m, C(4)H and C(5)H), 7.87-7.91 (2H, m, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 26.6, 28.6, 29.0, 29.2, 29.3, 30.0, 32.4 and 44.9 (8 x CH₂), 125.5, 126.6, 136.7 and 139.0 (4 x CH), 141.8 (quaternary); m/z (APCl) 328 (MH+, ³⁷Cl, 36%), 326 (MH+, ³⁵Cl, 100), 310 (37); HRMS found 326.2252, C₁₉H₃₃ClNO (MH+, ³⁵Cl) requires 326.2251.

Synthesis of 3-(12-hydroxydodecyl)-1-[12-(N-oxidopyridin-3-yl)dodecyl]pyridinium iodide (27)

To a solution of 12-pyridin-3-yldodecan-1-ol (12) (970mg, 3.68mmol) and NaI (662mg, 4.42mmol) in butan-2-one (50ml) was added 3-(12-chlorododecyl)pyridine-N-oxide (14) (1.15g, 3.85mmol). The orange solution was heated at reflux for 24 hours, cooled to room temperature and then concentrated in vacuo to give an off-white solid. Flash chromatography (Al₂O₃; CH₂Cl₂: MeOH; 9:1) afforded 3-(12-hydroxydodecyl)-1-[12-(N-oxidopyridin-3yl)dodecyl]pyridinium iodide (27) (2.45g, quant.) as an off-white solid; m.p. 96-99°C, R_f 0.63 (Al₂O₃; CH₂Cl₂: MeOH; 9:1; UV); R_f 0.43 (SiO₂/NaBr [20]; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3394m br (OH), 2919s, 2850s, 1467m, 1438m, 1267m, 1159m, 682m; δ_H (200MHz; $CDCl_3$) 1.09 (32H, br s, CH_2), 1.32-1.67 (6H, m, CH_2CH_2OH , $C(3')CH_2CH_2$ and $C(3)CH_2CH_2$, 1.86-1.98 (2H, m, CH_2CH_2N), 2.43 (2H, t, J7.5Hz, $C(3')CH_2$), 2.77 (2H, t, J7.5Hz, C(3)CH₂), 3.16 (1H, br s, OH), 3.45 (2H, t, J6.5Hz, CH₂OH), 4.76 (2H, t, J7Hz, CH₂N), 7.03-7.17 (2H, m, C(4')H and C(5')H), 7.91-8.01 (3H, m, C(2')H, C(5)H and C(6')H), 8.20 (1H, d, J8Hz, C(4)H), 9.12 (1H, d, J6Hz, C(6)H), 8.22 (1H, s, C(2)H); δ_C (50MHz; $CDCl_3$) 25.7, 25.9, 28.7, 28.9, 29.1 and 29.3 (6 x $\underline{C}H_2$), 30.2 and 30.3 ($\underline{C}(3')\underline{C}H_2\underline{C}H_2$ and $C(3)CH_2CH_2$), 31.8 (CH_2CH_2N), 32.5 ($C(3)CH_2$ and $C(3)CH_2$), 32.7 (CH_2CH_2OH), 61.5 (CH₂N), 62.3 (CH₂OH), 125.7 (C5'), 127.2 (C4'), 128.1 (C5), 136.5 and 138.6 (C2' and C6'), 141.8 (C3'), 142.2 (C6), 143.9 (C2), 144.1 (C3), 144.9 (C4); m/z (ES) 525.5 ([M-I]+, 100%); HRMS found 525.4417, C₃₄H₅₇N₂O₂ ([M-I]⁺) requires 525.4420.

Synthesis of 3-(12-bromododecyl)-1-[12-(pyridin-3-io)dodecyl]pyridinium bromide

To a solution of 3-(12-hydroxydodecyl)-1-[12-(N-oxidopyridin-3-yl)dodecyl]pyridinium iodide (27) (2.03g, 3.11mmol) in CHCl₃ (60ml) at 0°C under argon was added phosphorus tribromide (1.17ml, 12.5mmol) dropwise. The solution was stirred for 15 minutes at 0°C, heated at reflux for 1 hour, cooled to room temperature and then poured into an ice: water solution (50ml). The two-phase mixture was stirred, until the ice melted, then separated. The aq. phase was extracted with CH₂Cl₂ (3 x 50ml), and the organic phases were combined, dried over MgSO₄, filtered and concentrated in vacuo to give 3-(12-bromododecyl)-1-[12-(pyridin-3-

io)dodecyl]pyridinium bromide (2.32g, 98%) as a yellow oil; v_{max} (thin film)/cm⁻¹ 2924s, 2853s, 1630m, 1551m, 1504m, 1466m, 687m; δ_H (200MHz; CDCl₃) 1.09-1.18 (32H, br m, CH₂), 1.58-1.78 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.88-1.95 (2H, m, CH₂CH₂N), 2.73-2.84 (4H, m, C(3')CH₂ and C(3)CH₂), 3.28 (2H, t, J7Hz, CH₂Br), 4.83 (2H, t, J7.5Hz, CH₂N), 7.98-8.09 (2H, m, C(5')H and C(5)H), 8.20 (1H, d, J8Hz, C(4)H), 8.38 (1H, d, J8Hz, C(4')H), 8.53 (1H, s, C(2')H), 8.65 (1H, br d, J5Hz, C(6')H), 9.20 (1H, d, J6Hz, C(6)H), 9.24 (1H, s, C(2)H); δ_C (50MHz; CDCl₃) 25.9, 28.0, 28.6, 28.9, 29.1 and 29.3 (6 x CH₂), 30.1 and 30.3 (C(3')CH₂CH₂ and C(3)CH₂CH₂), 31.9 (CH₂CH₂N), 32.6 (C(3')CH₂, C(3)CH₂ and CH₂CH₂Br), 34.2 (CH₂Br), 61.7 (CH₂N), 127.5 (C5'), 128.1 (C5), 138.0 (C6'), 139.4 (C2'), 142.3 (C6), 143.3 (C3'), 143.9 (C2), 144.1 (C3), 144.9 (C4), 146.8 (C4').

3-(12-Bromododecyl)-1-(12-pyridin-3-yldodecyl)pyridinium bromide (28)

3-(12-Bromododecyl)-1-[12-(pyridin-3-io)dodecyl]pyridinium bromide was neutralised by being dissolved in CH₂Cl₂ and dried over K₂CO₃, filtered and concentrated *in vacuo* to afford 3-(12-bromododecyl)-1-(12-pyridin-3-yldodecyl)pyridinium bromide (28) (quant.) as a yellow oil; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.17-1.45 (32H, br m, CH₂), 1.54-1.91 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.97-2.10 (2H, m, CH₂CH₂N), 2.61 (2H, t, J7.5Hz, C(3')CH₂), 2.90 (2H, t, J8Hz, C(3)CH₂), 3.40 (2H, t, J7Hz, CH₂Br), 4.95 (2H, t, J7.5Hz, CH₂N), 7.23-7.27 (1H, m, C(5')H), 7.56 (1H, d, J6.5Hz, C(4')H), 8.03 (1H, dd, J8, 6Hz, C(5)H), 8.24 (1H, d, J8Hz, C(4)H), 8.45 (2H, br s, C(2')H and C(6')H), 9.16 (1H, s, C(2)H), 9.25 (1H, d, J6Hz, C(6)H); m/z (FAB) 573.5 ([M-Br]+, 8¹Br, 95%), 571.5 ([M-Br]+, ⁷⁹Br, 100), 328 (C₁₇H₂₉NBr+, ⁸¹Br, 16), 326 (C₁₇H₂₉NBr+, ⁷⁹Br, 18), 246 (C₁₇H₂₈N+, 50); HRMS found 573.3608, C₃₄H₅₆BrN₂ ([M-Br]+, ⁸¹Br) requires 573.3606.

Synthesis of cyclostellettamine A (1)

To a solution of NaI (1.01g, 6.75mmol) in butan-2-one (310ml) heated at reflux was added a solution of 3-(12-bromododecyl)-1-(12-pyridin-3-yldodecyl)pyridinium bromide (28) (2.00g, 3.07mmol) in butan-2-one (9ml) and CHCl₃ (1ml) at a rate of 0.01ml/minute over 24 hours. The orange solution was heated at reflux for 3 days, cooled to room temperature and then concentrated *in vacuo* to give an off-white powder. The powder was triturated with Et₂O (2 x 40ml), to remove any unreacted iodide. Flash chromatography (Al₂O₃; CH₂Cl₂: MeOH; 9:1) followed by recrystallisation from acetone afforded *cyclostellettamine A* (1) (1.52g, 66%) as an off-white powder; m.p. 218-220°C (lit. [11] m.p. 221-223°C); (Found: C, 54.6; H, 7.6; N, 3.7. C₃₄H₅₆I₂N₂ requires C, 54.7; H, 7.55; N, 3.8%); R_f 0.19 (Al₂O₃; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3016m, 2921s, 2850s, 1626m, 1504s, 1465s, 692m; $\delta_{\rm H}$ (200MHz; CDCl₃: CD₃OD; 9:1) 0.95-1.26 (32H, br m, CH₂), 1.56 (4H, br s, C(3)CH₂CH₂), 1.86 (4H, br s, NCH₂CH₂), 2.75 (4H, t, J7.5Hz, C(3)CH₂), 4.62 (4H, t, J7Hz, NCH₂), 7.89 (2H, dd, J8, 6Hz, C(5)H), 8.17 (2H, d, J8Hz, C(4)H), 8.82 (2H, d, J6Hz, C(6)H), 9.03 (2H, s, C(2)H); $\delta_{\rm C}$

(50MHz; CDCl₃: CD₃OD; 9:1) 26.9, 29.7, 29.9, 30.1, 30.2 and 30.7 (6 x $\underline{C}H_2$), 31.6 (C(3)CH₂CH₂), 33.0 (NCH₂CH₂), 33.8 (C(3)CH₂), 63.2 (NCH₂), 129.6 (C5), 143.4 (C6), 145.4 (C2), 145.8 (C3), 146.8 (C4); m/z (FAB) 619.5 ([M-I]+, 100%), 246 ([M-2I]²⁺, 28); HRMS found 619.3510, C₃₄H₅₆IN₂ ([M-I]+) requires 619.3488.

Synthesis of 1,18-diazatricyclo[29.3.1.1^{14,18}]hexatriaconta-14,31-diene (39)

Cyclostellettamine A (1) (105mg, 0.14mmol) was dissolved in MeOH (40ml) and CH₂Cl₂ (10ml), then cooled to -78°C. NaBH₄ (32mg, 0.84mmol) was added and the mixture was stirred for 30 minutes, after which it was allowed to warm to 0°C over 1 hour. The mixture was concentrated in vacuo and then partitioned between sat. aq. NaHCO₃ (20ml) and CH₂Cl₂ (20ml). The two-phase solution was separated and the aq. phase extracted with CH₂Cl₂ (3 x 20ml). The combined organic phases were washed with sat. aq. NaCl (20ml), dried over MgSO₄, filtered and concentrated in vacuo to give a colourless oil. Flash chromatography SiO₂; PE 40-60: EtOAc: Et₃N; 97:3:2) afforded 1, 18diazatricyclo[29.3.1.114,18] hexatriaconta-14,31-diene (39) (57mg, 81%) (<4% of the tetrahydropyridine regioisomer) as a white solid; m.p. 89-90°C; R_f 0.28 (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 97:3:2); v_{max} (KBr disk)/cm⁻¹ 2917s, 2850s, 1471m; δ_H (200MHz; CDCl₃) 1.26 (36H, br s, CH₂), 1.50-1.59 (4H, m, NCH₂CH₂CH₂), 1.93 (4H, t, J7Hz, C(3)CH₂), 2.14 (4H, br s, C(5) \underline{H}_2), 2.35-2.43 (4H, m, NC \underline{H}_2 (CH_2)₂), 2.48 (4H, t, J6Hz, C(6) \underline{H}_2), 2.84 (4H, s, C(2) \underline{H}_2), 5.42 (2H, br s, C(4) \underline{H}); δ_C (50MHz; CDCl₃) 25.7, 26.8, 27.3, 27.7, 29.0, 35.4, 50.6, 55.2 and 58.2 (9 x \underline{CH}_2), 118.9 (\underline{CH}), 136.6 (quaternary); m/z (APCI) 499.5 (MH+, 100%); HRMS found 499.4990, C₃₄H₆₃N₂ (MH⁺) requires 499.4991.

Synthesis of 3-(12-hydroxydodecyl)-1-[13-(N-oxidopyridin-3-yl)tridecyl]pyridinium iodide (29)

The title compound was synthesised similarly to **27**, using 12-pyridin-3-yldodecan-1-ol (**12**) (498mg, 1.89mmol), 3-(13-chlorotridecyl)pyridine-*N*-oxide (**20**) (590mg, 1.89mmol) and NaI (340mg, 2.27mmol) in butan-2-one (10ml) to afford *3-(12-hydroxydodecyl)-1-[13-(Noxidopyridin-3-yl)tridecyl]pyridinium iodide* (**29**) (1.23g, 97%) as an off-white powder; m.p. $100-103^{\circ}$ C, R_f 0.65 (Al₂O₃; CH₂Cl₂: MeOH; 9:1; UV); R_f 0.24 (SiO₂/NaBr [20]; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3370m br (OH), 2924s, 2853s, 1464m, 1436m, 1267m, 1159m, 734m, 684m; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.15 (34H, br s, CH₂), 1.38-1.69 (6H, m, CH₂CH₂OH, C(3')CH₂CH₂ and C(3)CH₂CH₂), 1.89-2.03 (2H, m, CH₂CH₂N), 2.49 (2H, t, *I7*.5Hz, C(3')CH₂), 2.82 (2H, t, *J7*.5Hz, C(3)CH₂), 3.15 (1H, br s, OH), 3.51 (2H, t, *J6*Hz, CH₂OH), 4.85 (2H, t, *J6*.5Hz, CH₂N), 7.06-7.17 (2H, m, C(4')H and C(5')H), 7.98-8.06 (3H, m, C(2')H, C(5)H and C(6')H), 8.20 (1H, d, *J7*.5Hz, C(4)H), 9.27 (2H, br s, C(2)H and C(6)H); $\delta_{\rm C}$ (50MHz; CDCl₃) 25.6, 25.9, 28.7, 28.8, 28.9, 29.0 and 29.2 (7 x CH₂), 30.1 and 30.3 (C(3')CH₂CH₂ and C(3)CH₂CH₂), 31.8 (CH₂CH₂N), 32.5 (C(3')CH₂ and C(3)CH₂), 32.7 (CH₂CH₂OH), 61.7 (CH₂N), 62.4 (CH₂OH), 125.8 (C5'), 127.3 (C4'), 128.2 (C5), 136.7 and

138.9 (C2' and C6'), 142.0 (C3'), 142.7 (C6), 144.2 (C2), 144.3 (C3), 144.9 (C4); m/z (FAB) 539.5 ([M-I]+, 100%), 523.5 ([M-IO]+, 17); HRMS found 539.4579, $C_{35}H_{59}N_2O_2$ ([M-I]+) requires 539.4577.

Synthesis of 3-(12-bromododecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (30)

The title compound was synthesised similarly to 28, using 3-(12-hydroxydodecyl)-1-[13-(Noxidopyridin-3-yl)tridecyl]pyridinium iodide (29) (1.17g, 1.75mmol) and phosphorus tribromide (0.66ml, 6.99mmol) in CHCl₃ (50ml) to give 3-(12-bromododecyl)-1-[13-(pyridin-3-io)tridecyl]pyridinium bromide (1.29g, 99%) as a pale yellow oil; v_{max} (thin film)/cm⁻¹ 2925s, 2853s, 1631m, 1552m, 1504m, 1467m, 752m, 687m; δ_H (200MHz; CDCl₃) 1.13-1.21 (34H, br m, CH₂), 1.61-1.82 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.94-2.05 (2H, m, CH₂CH₂N), 2.76-2.87 (4H, m, C(3')CH₂ and C(3)CH₂), 3.31 (2H, t, J7Hz, CH₂Br), 4.87 (2H, t, J7.5Hz, CH₂N), 8.01-8.10 (2H, m, C(5')<u>H</u> and C(5)<u>H</u>), 8.23 (1H, d, J8Hz, C(4)<u>H</u>), 8.39 (1H, d, J8Hz, C(4')H), 8.56 (1H, s, C(2')H), 8.68 (1H, d, J5.5Hz, C(6')H), 9.25 (1H, d, J6Hz, C(6)<u>H</u>), 9.28 (1H, s, C(2)<u>H</u>); δ_{C} (50MHz; CDCl₃) 25.9, 28.0, 28.6, 28.9, 29.1 and 29.3 (6 x CH₂), 30.2 and 30.4 (C(3')CH₂CH₂ and C(3)CH₂CH₂), 31.9 (CH₂CH₂N), 32.5 and 32.7 $(C(3')CH_2, C(3)CH_2 \text{ and } CH_2CH_2Br), 34.2 (CH_2Br), 61.7 (CH_2N), 127.4 (C5'), 128.1 (C5),$ 138.1 (C6'), 139.5 (C2'), 142.3 (C6), 143.2 (C3'), 143.9 (C2), 144.1 (C3), 144.8 (C4), 146.6 (C4'). 3-(12-Bromododecyl)-1-[13-(pyridin-3-io)tridecyl]pyridinium bromide was neutralised to afford 3-(12-bromododecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (30) (quant.) as a pale yellow oil; δ_H (200MHz; CDCl₃) 1.13-1.46 (34H, br m, CH₂), 1.57-1.88 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 2.00-2.08 (2H, m, CH₂CH₂N), 2.62 (2H, t, J7.5Hz, C(3')CH₂), 2.90 (2H, t, J8Hz, C(3)CH₂), 3.40 (2H, t, J7Hz, CH₂Br), 4.96 (2H, t, J7.5Hz, CH₂N), 7.26 (1H, dd, J7.5, 5Hz, C(5')H), 7.55 (1H, d, J7.5Hz, C(4')H), 8.02 (1H, dd, J8, 6Hz, C(5)H), 8.24 (1H, d, J8Hz, C(4)H), 8.42-8.45 (2H, m, C(2')H and C(6')H), 9.12 (1H, s, C(2)H), 9.26 (1H, d, J6Hz, C(6)H); m/z (FAB) 587.5 ([M-Br]⁺, ⁸¹Br, 97%), 585.5 ([M-Br]⁺, ⁷⁹Br, 100), 260 (C₁₈H₃₀N⁺, 21); HRMS found 585.3783, C₃₅H₅₈BrN₂ ([M-Br]⁺, ⁷⁹Br) requires 585.3783.

Synthesis of cyclostellettamine B (2)

The title compound was synthesised similarly to 1, using 3-(12-bromododecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (30) (921mg, 1.38mmol) in butan-2-one (9ml) and CHCl₃ (1ml), and NaI (455mg, 3.04mmol) in butan-2-one (150ml) to afford *cyclostellettamine B* (2) (715mg, 68%) as an off-white powder; m.p. 222-224°C (lit. [11] m.p. 222-224°C); (Found: C, 55.2; H, 7.85; N, 3.7. $C_{35}H_{58}I_2N_2$ requires C, 55.3; H, 7.7; N, 3.7%); R_f 0.24 (Al₂O₃; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3017m, 2921s, 2850s, 1627m, 1504s, 1464s, 691s; δ_H (200MHz; CDCl₃: CD₃OD; 9:1) 1.04-1.23 (34H, br m, CH₂), 1.55 (4H, br s, C(3)CH₂CH₂), 1.85 (4H, br s, NCH₂CH₂), 2.75 (4H, t, J7Hz, C(3)CH₂), 4.62 (4H, t, J7Hz,

NCH₂), 7.91 (2H, dd, J8, 6Hz, C(5)H), 8.18 (2H, d, J8Hz, C(4)H), 8.84 (2H, d, J5.5Hz, C(6)H), 8.94 (2H, s, C(2)H); $\delta_{\rm C}$ (50MHz; CDCl₃: CD₃OD; 9:1) 25.3, 25.5, 28.0, 28.1, 28.2, 28.3, 28.4, 28.7* and 28.9 (10 x CH₂), 29.9 and 30.0 (C(3)CH₂CH₂), 31.2 and 31.3 (NCH₂CH₂), 32.1 and 32.2 (C(3)CH₂), 61.7 (NCH₂), 128.3 (C5), 142.1 (C6), 143.9 (C2), 144.4 (C3), 145.5 (C4); *at this resonance two signals can be resolved; m/z (FAB) 633.5 ([M-I]+, 100%); HRMS found 633.3641, C₃₅H₅₈IN₂ ([M-I]+) requires 633.3645.

Synthesis of 1,18-diazatricyclo[30.3.1.1^{14,18}]heptatriaconta-14,32-diene (40)

The title compound was synthesised similarly to **39**, using cyclostellettamine B (**2**) (95mg, 0.13mmol) and NaBH₄ (28mg, 0.75mmol) in MeOH (40ml) and CH₂Cl₂ (10ml), to afford 1,18-diazatricyclo[30.3.1.1^{14,18}]heptatriaconta-14,32-diene (**40**) (59mg, 92%) (<7% of the tetrahydropyridine regioisomer) as a white solid; m.p. 52-55°C; R_f 0.29 (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 97:3:2); v_{max} (KBr disk)/cm⁻¹ 2917s, 2850s, 1471m; δ_{H} (200MHz; CDCl₃) 1.26 (38H, br s, CH₂), 1.54 (4H, br s, NCH₂CH₂CH₂), 1.93 (4H, t, J7Hz, C(3)CH₂), 2.14 (4H, br s, C(5)H₂), 2.37-2.44 (4H, m, NCH₂(CH₂)₂), 2.50 (4H, t, J5.5Hz, C(6)H₂), 2.85 (4H, br s, C(2)H₂), 5.42 (2H, br s, C(4)H₁); δ_{C} (50MHz; CDCl₃) 25.7, 26.7, 27.3, 27.5, 27.7, 29.0, 29.3, 35.4, 35.6, 50.5, 50.7, 55.0, 55.1, 58.7 and 58.9 (15 x CH₂), 119.0 and 119.1 (2 x CH), 136.5 (quaternary); m/z (APCI) 513.5 (MH⁺, 100%); HRMS found 513.5157, C₃₅H₆₅N₂ (MH⁺) requires 513.5148.

Synthesis of 3-(13-hydroxytridecyl)-1-[13-(N-oxidopyridin-3-yl)tridecyl]pyridinium iodide (31)

The title compound was synthesised similarly to 27, using 13-pyridin-3-yltridecan-1-ol (18) (218mg, 0.79mmol), 3-(13-chlorotridecyl)pyridine-N-oxide (20) (245mg, 0.79mmol) and NaI (141mg, 0.94mmol) in butan-2-one (10ml) to afford 3-(13-hydroxytridecyl)-1-[13-(Noxidopyridin-3-yl)tridecyl]pyridinium iodide (31) (524mg, 98%) as an off-white solid; m.p. 108-110°C, R_f 0.54 (Al₂O₃; CH₂Cl₂: MeOH; 9:1; UV); R_f 0.31 (SiO₂/NaBr [20]; CH₂Cl₂: MeOH; 9:1; UV); v_{max} (KBr disk)/cm⁻¹ 3396m br (OH), 2922s, 2850s, 1455m, 1436m, 1158m, 681m; δ_H (200MHz; CDCl₃) 1.20 (36H, br s, CH₂), 1.44-1.74 (6H, m, CH₂CH₂OH, $C(3')CH_2CH_2$ and $C(3)CH_2CH_2$), 1.96-2.04 (2H, m, CH_2CH_2N), 2.53 (3H, t with a broad shoulder, J7.5Hz, $C(3')CH_2$ and OH), 2.89 (2H, t, J6Hz, $C(3)CH_2$), 3.56 (2H, t, J6Hz, CH_2OH), 4.86 (2H, t, J7.5Hz, CH₂N), 7.11-7.25 (2H, m, C(4')H and C(5')H), 8.03-8.10 (3H, m, C(2')H, C(5)H and C(6')H), 8.27 (1H, d, J8Hz, C(4)H), 9.16-9.21 (2H, m, C(2)H and C(6)H); δ_C $(50MHz; CDCl_3: CD_3OD; 9:1)$ 25.5, 25.7, 28.6, 28.7, 28.9 and 29.2 (6 x $\underline{C}H_2$), 30.1* $(C(3')CH_2CH_2 \text{ and } C(3)CH_2CH_2), 31.5 (CH_2CH_2N), 32.3 (C(3')CH_2 \text{ and } C(3)CH_2), 32.4$ (CH_2CH_2OH) , 61.8 (CH_2N) , 62.1 (CH_2OH) , 126.0 (C5), 128.2 (C4), 129.0 (C5), 136.5 and 138.7 (C2' and C6'), 142.2 (C6), 142.5 (C3'), 143.7 (C2), 144.5 (C3), 145.2 (C4); *at this resonance two signals can be resolved; m/z (FAB) 553.5 ([M-I]+, 100%), 537.5 ([M-IO]+, 12); HRMS found 553.4719, $C_{36}H_{61}N_2O_2$ ([M-I]+) requires 553.4733.

Synthesis of 3-(13-bromotridecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (32)

The title compound was synthesised similarly to 28, using 3-(13-hydroxytridecyl)-1-[13-(Noxidopyridin-3-yl)tridecyl]pyridinium iodide (31) (503mg, 0.74mmol) and phosphorus tribromide (0.28ml, 2.96mmol) in CHCl₃ (10ml) to give 3-(13-bromotridecyl)-1-[13-(pyridin-3-io)tridecyl]pyridinium bromide (584mg, quant.) as a yellow oil; v_{max} (thin film)/cm⁻¹ 2924s, 2854s, 1630m, 1552m, 1468m, 1242m, 752m; δ_H (200MHz; CDCl₃) 1.15-1.36 (36H, br m, CH₂), 1.64-1.81 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.93-2.06 (2H, m, CH₂CH₂N), 2.77-2.89 (4H, m, C(3')CH₂ and C(3)CH₂), 3.34 (2H, t, J7Hz, CH₂Br), 4.91 (2H, t, J7.5Hz, C \underline{H}_2 N), 8.02-8.11 (2H, m, C(5') \underline{H} and C(5) \underline{H}), 8.24 (1H, d, J8Hz, C(4) \underline{H}), 8.40 (1H, d, J8Hz, C(4')H), 8.61 (1H, s, C(2')H), 8.72 (1H, br s, C(6')H), 9.27 (2H, br s, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 25.9, 28.0, 28.6, 28.9, 29.0, 29.1 and 29.4 (7 x $\underline{C}H_2$), 30.2 and 30.4 $(C(3')CH_2CH_2 \text{ and } C(3)CH_2CH_2), 31.9 (CH_2CH_2N), 32.7 (C(3')CH_2, C(3)CH_2 \text{ and}$ CH2CH2Br), 34.1 (CH2Br), 61.7 (CH2N), 127.4 (C5'), 128.1 (C5), 138.1 (C6'), 139.6 (C2'), 142.4 (C6), 143.3 (C3'), 143.9 (C2), 144.1 (C3), 144.8 (C4), 146.6 (C4'). 3-(13-Bromotridecyl)-1-[13-(pyridin-3-io)tridecyl]pyridinium bromide was neutralised as before to afford 3-(13bromotridecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (32) (quant.) as a pale yellow oil; δ_H (200MHz; CDCl₃) 1.25 (36H, br s, CH₂), 1.57-1.88 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.98-2.13 (2H, m, CH₂CH₂N), 2.74 (2H, t, J8Hz, C(3')CH₂), 2.90 (2H, t, J8Hz, C(3)CH₂), 3.40 (2H, t, J7Hz, CH₂Br), 4.98 (2H, t, J7.5Hz, CH₂N), 7.50 (1H, dd, J7.5, 5.5Hz, C(5')H), 7.81 (1H, d, J8Hz, C(4')H), 8.04 (1H, dd, J8, 6Hz, C(5)H), 8.24 (1H, d, J8Hz, C(4)H), 8.48-8.59 (2H, m, C(2')H and C(6')H), 9.24 (1H, s, C(2)H), 9.33 (1H, d, J5.5Hz, C(6)H); m/z (FAB) 601.5 ([M-Br]+, 81Br, 99%), 599.5 ([M-Br]+, 79Br, 100), 342 (C₁₈H₃₁BrN+, ⁸¹Br, 41), 340 ($C_{18}H_{31}BrN^+$, ⁷⁹Br, 33), 260 ($C_{18}H_{30}N^+$, 16); HRMS found 601.3921, C₃₆H₆₀BrN₂ ([M-Br]+, 81Br) requires 601.3919.

Synthesis of cyclostellettamine C (3)

The title compound was synthesised similarly to 1, using 3-(13-bromotridecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (32) (485mg, 0.71mmol) in butan-2-one (9ml) and CHCl₃ (1ml), and NaI (235mg, 1.57mmol) in butan-2-one (80ml) to afford *cyclostellettamine C* (3) (357mg, 65%) as an off-white powder; m.p. 231-233°C (lit. [11] m.p. 233-236°C); (Found: C, 55.9; H, 8.05; N, 3.6. $C_{36}H_{60}I_2N_2$ requires C, 55.8; H, 7.8; N, 3.6%); R_f 0.27 (Al₂O₃; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3016m, 2921s, 2851s, 1627m, 1504m, 1465m, 692m; δ_H (200MHz; CDCl₃: CD₃OD; 9:1) 1.00-1.21 (36H, br m, CH₂), 1.59 (4H, br s, C(3)CH₂CH₂), 1.88 (4H, br s, NCH₂CH₂), 2.77 (4H, t, J7.5Hz, C(3)CH₂), 4.60 (4H, t, J7Hz, NCH₂), 7.89 (2H, dd, J8, 6.5Hz, C(5)H), 8.18 (2H, d, J7.5Hz, C(4)H), 8.75 (2H, d, J5.5Hz, C(6)H), 8.89 (2H, s, C(2)H); δ_C (50MHz; CDCl₃: CD₃OD; 9:1) 27.1, 29.9, 30.2 and 30.6 (4 x CH₂), 31.5 (C(3)CH₂CH₂), 32.8 (NCH₂CH₂), 33.9 (C(3)CH₂), 63.3 (NCH₂), 129.7 (C5), 143.5 (C6), 145.3 (C2), 145.7 (C3), 146.8 (C4); m/z (FAB) 647.5 ([M-I]+, 39%), 520.5 (28), 260 ([M-2I]²⁺, 100); HRMS found 647.3781, $C_{36}H_{60}IN_2$ ([M-I]+) requires 647.3801.

Synthesis of 1,19-diazatricyclo[31.3.1.1^{15,19}]octatriaconta-15,33-diene (41)

The title compound was synthesised similarly to 39, using cyclostellettamine C (3) (59mg, 76µmol) and NaBH₄ (17mg, 450µmol) in MeOH (40ml) and CH₂Cl₂ (10ml), to afford 1,19-diazatricyclo[31.3.1.1^{15,19}]octatriaconta-15,33-diene (41) (38mg, 96%) (<5% of the tetrahydropyridine regioisomer) as a white solid; m.p. 60-62°C; R_f 0.31 (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 97:3:2); v_{max} (KBr disk)/cm⁻¹ 2917s, 2850s, 1471m; $\delta_{\rm H}$ (200MHz; CDCl₃) 1.26 (40H, br s, CH₂), 1.47-1.56 (4H, m, NCH₂CH₂CH₂), 1.94 (4H, t, J6.5Hz, C(3)CH₂), 2.14 (4H, br s, C(5)H₂), 2.35-2.43 (4H, m, NCH₂(CH₂)₂), 2.48 (4H, t, J5.5Hz, C(6)H₂), 2.83 (4H, br s, C(2)H₂), 5.42 (2H, br s, C(4)H); $\delta_{\rm C}$ (50MHz; CDCl₃) 25.8, 26.7, 27.4, 27.6, 29.0, 29.1, 35.5, 50.6, 55.2 and 58.9 (10 x CH₂), 119.0 (CH), 136.6 (quaternary); m/z (APCI) 527.5 (MH⁺, 100%); HRMS found 527.5307, C₃₆H₆₇N₂ (MH⁺) requires 527.5304.

Synthesis of 3-(14-hydroxytetradecyl)-1-[12-(N-oxidopyridin-3-yl)dodecyl]pyridinium iodide (33)

The title compound was synthesised similarly to 27, using 14-pyridin-3-yltetradecan-1-ol (24) (75mg, 0.26mmol), 3-(12-chlorododecyl)pyridine-N-oxide (14) (76mg, 0.26mmol) and NaI (47mg, 0.312mmol) in butan-2-one (5ml) to afford 3-(14-hydroxytetradecyl)-1-[12-(Noxidopyridin-3-yl)dodecyl]pyridinium iodide (33) (162mg, 93%) as a pale yellow solid; m.p. 94-98°C, R_f 0.61 (Al₂O₃; CH₂Cl₂: MeOH; 9:1; UV); R_f 0.20 (SiO₂/NaBr [20]; CH₂Cl₂: MeOH; 9:1); ν_{max} (KBr disk)/cm⁻¹ 3388m br (OH), 2921s, 2852s, 1466m, 1264m, 1159m, 683m; δ_H $(200MHz; CDCl_3) 1.30 (36H, br s, CH_2), 1.50-1.68 (7H, m, CH_2CH_2OH, C(3')CH_2CH_2 and$ $C(3)CH_2CH_2$), 1.98-2.11 (2H, m, CH_2CH_2N), 2.59 (2H, t, J7.5Hz, $C(3')CH_2$), 2.92 (2H, t, J7.5Hz, C(3)CH₂), 3.64 (2H, t, J6.5Hz, CH₂OH), 4.95 (2H, t, J7.5Hz, CH₂N), 7.17-7.27 (2H, m, C(4')H and C(5')H), 8.00-8.10 (3H, m, C(2')H, C(5)H and C(6')H), 8.25 (1H, d, J8.5Hz, C(4)H, 9.14 (1H, s, C(2)H), 9.24 (1H, d, J6Hz, C(6)H); δ_C (50MHz; CDCl₃) 25.7, 25.8, 28.7, 28.9, 29.3 and 29.4 (6 x CH_2), 30.1 and 30.3 (C(3') CH_2CH_2 and C(3) CH_2CH_2), 31.8 (CH_2CH_2N) , 32.5 $(C(3)CH_2)$ and $(C(3)CH_2)$, 32.7 (CH_2CH_2OH) , 61.7 (CH_2N) , 62.5 (CH_2OH) , 125.8 (C5'), 127.4 (C4'), 128.3 (C5), 136.8 and 139.0 (C2' and C6'), 142.1 (C3'), 142.5 (C6), 144.1 (C2), 144.5 (C3), 145.2 (C4); m/z (FAB) 553.5 ([M-I]+, 100%), 537.5 ([M-IO]+, 22); HRMS found 553.4716, $C_{36}H_{61}N_2O_2$ ([M-I]⁺) requires 553.4733.

Synthesis of 3-(14-bromotetradecyl)-1-(12-pyridin-3-yldodecyl)pyridinium bromide (34)

The title compound was synthesised similarly to 28, using 3-(14-hydroxytetradecyl)-1-[12-(N-oxidopyridin-3-yl)dodecyl]pyridinium iodide (33) (126mg, 0.19mmol) and phosphorus tribromide (70µl, 0.74mmol) in CHCl₃ (10ml) to give 3-(14-bromotetradecyl)-1-[12-(pyridin-3-io)dodecyl]pyridinium bromide (135mg, 96%) as a pale yellow oil; v_{max} (thin film)/cm⁻¹ 2925s, 2853s, 1631m, 1552m, 1504m, 1467m, 727m, 687m; δ_H (200MHz; CDCl₃) 1.19 (36H,

br s, CH₂), 1.57-1.82 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.94-2.04 (2H, m, CH2CH2N), 2.74-2.90 (4H, m, C(3')CH2 and C(3)CH2), 3.35 (2H, t, J7Hz, CH2Br), 4.92 (2H, t, 17.5Hz, CH2N), 8.00-8.10 (2H, m, C(5')H and C(5)H), 8.23 (1H, d, J8Hz, C(4)H), 8.33 (1H, d, J8Hz, C(4')H), 8.58 (1H, s, C(2')H), 8.68 (1H, br d, J5Hz, C(6')H), 9.32 (2H, br s, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 25.9, 28.0, 28.6, 28.9, 29.0, 29.1, 29.3 and 29.5 (8 x CH₂), 30.2 and 30.4 (C(3')CH2CH2 and C(3)CH2CH2), 32.0 (CH2CH2N), 32.7 (C(3')CH2, C(3)CH2 and CH₂CH₂Br), 34.1 (CH₂Br), 61.7 (CH₂N), 127.1 (C5'), 128.0 (C5), 138.8 (C6'), 140.4 (C2'), 142.5 (C6), 142.8 (C3'), 144.0 (C2), 144.1 (C3), 144.7 (C4), 145.7 (C4').3-(14-Bromotetradecyl)-1-[12-(pyridin-3-io)dodecyl]pyridinium bromide was neutralised as before to afford 3-(14-bromotetradecyl)-1-(12-pyridin-3-yldodecyl)pyridinium bromide (34) (quant.) as a pale yellow oil; δ_H (200MHz; CDCl₃) 1.18 (36H, br s, CH₂), 1.55-1.81 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.99-2.08 (2H, m, CH₂CH₂N), 2.70 (2H, t, J7.5Hz, C(3')CH₂), 2.84 (2H, t, J8Hz, C(3)CH₂), 3.33 (2H, t, J7Hz, CH₂Br), 4.90 (2H, t, J7.5Hz, CH₂N), 7.70 (1H, dd, J8, 5.5Hz, C(5')H), 7.88 (1H, d, J8Hz, C(4')H), 7.99-8.08 (1H, m, C(5)H), 8.20 (1H, d, J8Hz, C(4)H), 8.47-8.56 (2H, m, C(2')H and C(6')H), 8.99 (1H, s, C(2)H), 9.29 (1H, br s, C(6)H); m/z (FAB) 601.5 ([M-Br]+, 81Br, 98%), 599.5 ([M-Br]+, 79Br, 100), 356 (C₁₉H₃₃BrN+, 81 Br, 65), 354 (C₁₉H₃₃BrN⁺, 79 Br, 50), 246 (C₁₇H₂₈N⁺, 16); HRMS found 599.3937, $C_{36}H_{60}BrN_2$ ([M-Br]+, ⁷⁹Br) requires 599.3940.

Synthesis of cyclostellettamine D (4)

The title compound was synthesised similarly to 1, using 3-(14-bromotetradecyl)-1-(12-pyridin-3-yldodecyl)pyridinium bromide (34) (89mg, 0.13mmol) in butan-2-one (9ml) and CHCl₃ (1ml), and NaI (43mg, 0.29mmol) in butan-2-one (30ml) to afford *cyclostellettamine D* (4) (75mg, 74%) as an off-white powder; m.p. 188-190°C (lit. [11] m.p. 188-192°C); (Found: C, 55.7; H, 8.0; N, 3.5. $C_{36}H_{60}I_2N_2$ requires C, 55.8; H, 7.8; N, 3.6%); R_f 0.24 (Al₂O₃; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3017m, 2918s, 2850s, 1626m, 1504s, 1465s, 691s; δ_H (200MHz; CDCl₃: CD₃OD; 9:1) 1.10-1.26 (36H, br m, CH₂), 1.64 (4H, br s, C(3)CH₂CH₂), 1.90 (4H, br s, NCH₂CH₂), 2.79 (4H, t, *J*7.5Hz, C(3)CH₂), 4.62 (4H, t, *J*7Hz, NCH₂), 7.91 (2H, dd, *J*7.5, 6.5Hz, C(5)H), 8.19 (2H, d, *J*7.5Hz, C(4)H), 8.76 (1H, d, *J*6Hz, C(6)H), 8.79 (1H, d, *J*6Hz, C(6)H), 8.97 (2H, s, C(2)H); δ_C (100MHz; CDCl₃: CD₃OD; 9:1) 25.40, 28.09, 28.16, 28.24, 28.45, 28.63 and 28.72 (7 x CH₂), 29.86 and 29.97 (C(3)CH₂CH₂), 31.23 and 31.32 (NCH₂CH₂), 32.20 (C(3)CH₂), 61.69 (NCH₂), 127.88 (C5), 141.57 and 141.69 (C6), 143.65 and 143.73 (C2), 144.22 and 144.27 (C3), 145.04 (C4); m/z (FAB) 647.5 ([M-I]+, 81%), 520.5 (80), 274 (C₁₉H₃₂N+, 100), 260 ([M-2I]²⁺, 81), 246 (C₁₇H₂₈N+, 31); HRMS found 647.3785, C₃₆H₆₀IN₂ ([M-I]+) requires 647.3801.

Synthesis of 1,18-diazatricyclo[31.3.1.1^{14,18}]octatriaconta-14,33-diene (42)

The title compound was synthesised similarly to 39, using cyclostellettamine D (4) (40mg, 51µmol) and NaBH₄ (12mg, 310µmol) in MeOH (20ml) and CH₂Cl₂ (10ml), to afford 1,18-diazatricyclo[31.3.1.1^{14,18}] octatriaconta-14,33-diene (42) (26mg, 95%) (<10% of the tetrahydropyridine regioisomer) as a colourless oil; R_f 0.28 (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 97:3:2); v_{max} (thin film)/cm⁻¹ 2917s, 2850s, 1472m; δ_H (200MHz; CDCl₃) 1.26-1.46 (40H, br m, CH₂), 1.47-1.64 (4H, m, NCH₂CH₂CH₂), 1.95 (4H, br s, C(3)CH₂), 2.15 (4H, br s, C(5)H₂), 2.35-2.57 (8H, m, NCH₂(CH₂)₂ and C(6)H₂), 2.84 (4H, br s, C(2)H₂), 5.43 (2H, br s, C(4)H); δ_C (50MHz; CDCl₃) 25.9, 26.9, 27.1, 27.4, 27.7, 27.8, 29.2, 29.6, 35.3, 35.5, 50.1, 50.6, 55.3, 55.9 and 58.8 (15 x CH₂), 118.5 and 118.8 (2 x CH), 136.4 (quaternary); m/z (APCl) 527.5 (MH+, 100%); HRMS found 527.5299, $C_{36}H_{67}N_2$ (MH+) requires 527.5304.

Synthesis of 3-(14-hydroxytetradecyl)-1-[13-(N-oxidopyridin-3-yl)tridecyl]pyridinium iodide (35)

The title compound was synthesised similarly to 27, using 14-pyridin-3-yltetradecan-1-ol (24) (953mg, 3.27mmol), 3-(13-chlorotridecyl)pyridine-N-oxide (20) (1.02g, 3.27mmol) and NaI (588mg, 3.92mmol) in butan-2-one (50ml) to afford 3-(14-hydroxytetradecyl)-1-[13-(Noxidopyridin-3-yl)tridecyl]pyridinium iodide (35) (2.25g, 99%) as a white powder; m.p. 122-125°C, R_f 0.67 (Al₂O₃; CH₂Cl₂: MeOH; 9:1; UV); R_f 0.24 (SiO₂/NaBr [20]; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3400m br (OH), 2920s, 2851s, 1468m, 1159m, 683m; δ_H (400MHz; CDCl₃) 1.09-1.30 (38H, br m, CH₂), 1.39-1.50 (4H, m, CH₂CH₂OH and C(3')CH₂CH₂), 1.61 (2H, pseudo qui, J7Hz, C(3)CH₂CH₂), 1.93 (2H, pseudo qui, J7Hz, CH₂CH₂N), 2.46 (2H, t, J7.5Hz, C(3')CH₂), 2.80 (2H, t, J7.5Hz, C(3)CH₂), 2.93 (1H, br s, OH), 3.48 (2H, t, J6.5Hz, CH₂OH), 4.80 (2H, t, J7.5Hz, CH₂N), 7.06 (1H, d, J8Hz, C(4')<u>H</u>), 7.14 (1H, pseudo t, J7.5Hz, C(5')H), 7.94-7.96 (2H, m, C(2')H and C(6')H), 8.01 (1H, dd, J8, 6Hz, C(5)H), 8.20 (1H, d, J8Hz, C(4)<u>H</u>), 9.15 (1H, d, J6Hz, C(6)<u>H</u>), 9.23 (1H, s, C(2)<u>H</u>); δ_{C} (100MHz; CDCl₃) 25.74, 25.91, 28.76, 28.91, 28.94, 29.12, 29.23, 29.26, 29.35 and 29.43 (10 x CH₂), 30.18 and 30.36 $(C(3')CH_2CH_2 \text{ and } C(3)CH_2CH_2), 31.86 (CH_2CH_2N), 32.51 \text{ and } 32.56 (C(3')CH_2 \text{ and } C(3)CH_2CH_2)$ $C(3)CH_2$, 32.75 (CH_2CH_2OH), 61.63 (CH_2N), 62.41 (CH_2OH), 125.63 (CS'), 127.09 (C4'), 128.08 (C5), 136.51 and 138.70 (C2' and C6'), 141.82 (C3'), 142.28 (C6), 143.89 (C2), 144.14 (C3), 144.87 (C4); m/z (ES) 567.5 ([M-I]+, 100%); HRMS found 567.4894, C₃₇H₆₃N₂O₂ ([M-I]+, 100%); HRMS found 567.4894, C₃₇H₆₃N₂O Π^{+}) requires 567.4890.

Synthesis of 3-(14-bromotetradecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (36)

The title compound was synthesised similarly to 28, using 3-(14-hydroxytetradecyl)-1-[13-(N-oxidopyridin-3-yl)tridecyl]pyridinium iodide (35) (1.33g, 1.91mmol) and phosphorus tribromide (0.72ml, 7.64mmol) in CHCl₃ to give 3-(14-bromotetradecyl)-1-[13-(pyridin-3-

io)tridecyl]pyridinium bromide (1.46g, 99%) as a pale yellow oil; v_{max} (thin film)/cm⁻¹ 2925s, 2853s, 1630m, 1551m, 1504m, 1466m, 687m; δ_H (200MHz; CDCl₃) 1.17-1.46 (38H, br m, CH₂), 1.70-1.90 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.94-2.12 (2H, m, CH₂CH₂N), 2.83-2.93 (4H, m, C(3')CH₂ and C(3)CH₂), 3.39 (2H, t, J7Hz, CH₂Br), 4.95 (2H, t, J7.5Hz, CH₂N), 8.04-8.10 (2H, m, C(5')H and C(5)H), 8.25 (1H, d, J8Hz, C(4)H), 8.40 (1H, d, J8Hz, C(4')H), 8.64 (1H, s, C(2')H), 8.73 (1H, d, J5.5Hz, C(6')H), 9.24 (1H, s, C(2)H), 9.31 (1H, d, J6Hz, C(6)H); $\delta_{\rm C}$ (100MHz; CDCl₃) 25.91, 28.01, 28.60, 28.63, 28.89, 28.93, 29.05, 29.16, 29.21, 29.27, 29.37 and 29.44 (12 x CH_2), 30.20 and 30.36 (C(3') CH_2CH_2 and $C(3)CH_2CH_2$, 31.90 (CH₂CH₂N), 32.54 and 32.68 (C(3')CH₂, C(3)CH₂ and CH₂CH₂Br), 34.16 (CH₂Br), 61.66 (CH₂N), 127.40 (C5'), 128.10 (C5), 138.37 (C6'), 139.75 (C2'), 142.40 (C6), 143.11 (C3'), 143.90 (C2), 144.11 (C3), 144.81 (C4), 146.43 (C4').3-(14-Bromotetradecyl)-1-[13-(pyridin-3-io)tridecyl]pyridinium bromide was neutralised as before to afford 3-(14-bromotetradecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (36) (quant.) as a pale yellow oil; δ_H (200MHz; CDCl₃) 1.16-1.43 (38H, br m, CH₂), 1.57-1.88 (6H, m, $C(3')CH_2CH_2$, $C(3)CH_2CH_2$ and CH_2CH_2Br), 1.99-2.05 (2H, m, CH_2CH_2N), 2.59 (2H, t, J7.5Hz, C(3')CH₂), 2.89 (2H, t, J8Hz, C(3)CH₂), 3.40 (2H, t, J7Hz, CH₂Br), 4.96 (2H, t, J7.5Hz, CH₂N), 7.20 (1H, dd, J8, 5Hz, C(5')H), 7.49 (1H, d, J8Hz, C(4')H), 8.02 (1H, dd, J8, 6Hz, C(5)H), 8.23 (1H, d, J8Hz, C(4)H), 8.40-8.43 (2H, m, C(2)H and C(6)H), 9.15 (1H, s, C(2)H), 9.28 (1H, d, J6Hz, C(6)H); m/z (FAB) 615.5 ([M-Br]+, 81Br, 100%), 613.5 ([M-Br]+, ⁷⁹Br, 98); HRMS found 613.4089, C₃₇H₆₂BrN₂ ([M-Br]⁺, ⁷⁹Br) requires 613.4096.

Synthesis of cyclostellettamine E (5)

The title compound was synthesised similarly to 1, using 3-(14-bromotetradecyl)-1-(13-pyridin-3-yltridecyl)pyridinium bromide (36) (1.31g, 1.89mmol) in butan-2-one (9ml) and CHCl₃ (1ml), and NaI (622mg, 4.15mmol) in butan-2-one (200ml) to afford *cyclostellettamine* E (5) (934mg, 63%) as an off-white powder; m.p. 222-224°C (lit. [11] m.p. 222-224°C); (Found: C, 56.0; H, 8.1; N, 3.5. $C_{37}H_{62}I_2N_2$ requires C, 56.4; H, 7.9; N, 3.6%); R_f 0.25 (Al₂O₃; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3017m, 2922s, 2850s, 1627m, 1504m, 1464m, 691m; $\delta_{\rm H}$ (200MHz; CDCl₃: CD₃OD; 9:1) 1.14-1.32 (38H, br m, CH₂), 1.67 (4H, br s, C(3)CH₂CH₂), 1.97 (4H, br s, NCH₂CH₂), 2.86 (4H, t, \mathcal{F} .5Hz, C(3)CH₂), 4.75 (4H, t, \mathcal{F} .7Hz, NCH₂), 8.01 (2H, dd, \mathcal{F} 8, 6Hz, C(5)H), 8.24 (2H, d, \mathcal{F} 8Hz, C(4)H), 8.93-8.98 (2H, br m, C(6)H), 9.04 (2H, s, C(2)H); $\delta_{\rm C}$ (50MHz; CDCl₃: CD₃OD; 9:1) 25.3, 25.5, 28.0, 28.2, 28.5 and 28.8 (6 x CH₂), 29.9 and 30.1 (C(3)CH₂CH₂), 31.2 and 31.6 (NCH₂CH₂), 32.1 and 32.2 (C(3)CH₂), 61.6 (NCH₂), 128.3 (C5), 142.2 (C6), 143.9 (C2), 144.2 (C3), 145.4 (C4); m/z (FAB) 661.5 ([M-I]+, 87%), 534.5 (99), 267 ([M-2I]²⁺, 100); HRMS found 661.3963, $C_{37}H_{62}IN_2$ ([M-I]+) requires 661.3958.

Synthesis of 1,19-diazatricyclo[32.3.1.1^{15,19}]nonatriaconta-15,34-diene (43)

The title compound was synthesised similarly to 39, using cyclostellettamine E (5) (36mg, 46µmol) and NaBH₄ (10mg, 270µmol) in MeOH (20ml) and CH₂Cl₂ (10ml), to afford 1,19-diazatricyclo[32.3.1.115,19]nonatriaconta-15,34-diene (43) (23mg, 92%) (<8% of the tetrahydropyridine regioisomer) as a white solid; m.p. 41-44°C; R_f 0.29 (base-washed SiO₂; PE 40-60: EtOAc: Et₃N; 97:3:2); v_{max} (KBr disk)/cm⁻¹ 2917s, 2850s, 1470m, 1176m, 1134m, 944m; δ_{H} (200MHz; CDCl₃) 1.26 (42H, br s, CH₂), 1.45-1.56 (4H, m, NCH₂CH₂CH₂), 1.93 (4H, br s, C(3)CH₂), 2.15 (4H, br s, C(5)H₂), 2.33-2.52 (8H, m, NCH₂(CH₂)₂ and C(6)H₂), 2.83 (4H, br s, C(2)H₂), 5.42 (2H, br s, C(4)H); δ_{C} (50MHz; CDCl₃) 25.7, 25.8, 26.8, 27.0, 27.5, 27.6, 29.1, 29.3, 29.5, 35.3, 50.1, 50.5, 55.3, 56.0 and 58.8 (15 x CH₂), 118.7 and 119.1 (2 x CH), 136.6 (quaternary); m/z (APCI) 541.5 (MH⁺, 100%); HRMS found 541.5467, C₃₇H₆₉N₂ (MH⁺) requires 541.5461.

Synthesis of 3-(14-hydroxytetradecyl)-1-[14-(N-oxidopyridin-3-yl)tetradecyl]pyridinium iodide (37)

The title compound was synthesised similarly to 27, using 14-pyridin-3-yltetradecan-1-ol (24) (345mg, 1.18mmol), 3-(14-chlorotetradecyl)pyridine-N-oxide (26) (386mg, 1.18mmol) and NaI (213mg, 1.42mmol) in butan-2-one (10ml) to afford 3-(14-hydroxytetradecyl)-1-[14-(N-oxidopyridin-3-yl)tetradecyl]pyridinium iodide (37) (837mg, 100%) as a white solid; m.p. 100-103°C, R_f 0.63 (Al₂O₃; CH₂Cl₂: MeOH; 9:1; UV); R_f 0.25 (SiO₂/NaBr [20]; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3402m br (OH), 2920s, 2851s, 1468m, 1436m, 1265m, 1159m, 683m; δ_H (200MHz; CDCl₃) 1.21 (40H, br s, CH₂), 1.49-1.74 (6H, m, CH₂CH₂OH and C(3')CH₂CH₂ and C(3)CH₂CH₂), 1.94-2.08 (2H, m, CH₂CH₂N), 2.23 (1H, br s, OH), 2.55 (2H, t, J7.5Hz, C(3')CH2), 2.88 (2H, t, J7.5Hz, C(3)CH2), 3.59 (2H, t, J6.5Hz, CH2OH), 4.89 (2H, t, 77.5Hz, CH₂N), 7.14-7.24 (2H, m, C(4')H and C(5')H), 8.03-8.09 (3H, m, C(2')H, C(5)H and C(6')H), 8.26 (1H, d, J8Hz, C(4)H), 9.21 (2H, br s, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 25.7, 25.9, 28.8, 29.0, 29.2 and 29.4 (6 x $\underline{C}H_2$), 30.2 and 30.4 (C(3')C $\underline{H}_2\underline{C}H_2$ and $C(3)CH_2CH_2$), 31.9 (CH_2CH_2N), 32.6 ($C(3)CH_2$ and $C(3)CH_2$), 32.7 (CH_2CH_2OH), 61.8 (CH₂N), 62.7 (CH₂OH), 125.5 (C5'), 126.9 (C4'), 128.0 (C5), 136.6 and 138.8 (C2' and C6'), 141.8 (C3'), 142.3 (C6), 143.8 (C2), 144.2 (C3), 144.9 (C4); m/z (FAB) 581.5 ([M-I]+, 100%), 565.5 ([M-IO]+, 28); HRMS found 581.5054, $C_{38}H_{65}N_2O_2$ ([M-I]+) requires 581.5046.

Synthesis of 3-(14-bromotetradecyl)-1-(14-pyridin-3-yltetradecyl)pyridinium bromide (38)

The title compound was synthesised similarly to 28, using 3-(14-hydroxytetradecyl)-1-[14-(N-oxidopyridin-3-yl)tetradecyl]pyridinium iodide (37) (755mg, 1.06mmol) and phosphorus tribromide (0.40ml, 4.26mmol) in CHCl₃ (20ml) to give 3-(14-bromotetradecyl)-1-[14-(pyridin-3-io)tetradecyl]pyridinium bromide (851mg, quant.) as a pale yellow oil which solidified on standing; v_{max} (thin film)/cm-1 2924s, 2853s, 1630m, 1552m, 1468m, 1258m,

1017m, 686m; δ_H (200MHz; CDCl₃) 1.09-1.40 (40H, br m, CH₂), 1.57-1.84 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 2.00-2.09 (2H, m, CH₂CH₂N), 2.81-2.92 (4H, m, $C(3')C_{12}$ and $C(3)C_{12}$, 3.37 (2H, t, J7Hz, $C_{12}Br$), 4.93 (2H, t, J7.5Hz, $C_{12}N$), 8.05-8.12 (2H, m, C(5')H and C(5)H), 8.26 (1H, d, J8Hz, C(4)H), 8.41 (1H, d, J8Hz, C(4')H), 8.61 (1H, s, C(2')H, 8.72 (1H, d, J5.5Hz, C(6')H), 9.30 (2H, s, C(2)H and C(6)H); δ_C (50MHz; CDCl₃) 25.9, 28.0, 28.6, 28.9, 29.2, 29.4 and 29.5 (7 x \underline{CH}_2), 30.2 and 30.4 (C(3')CH₂ \underline{CH}_2 and $C(3)CH_2CH_2$), 31.9 (CH_2CH_2N), 32.6 and 32.7 ($C(3)CH_2$, $C(3)CH_2$ and CH_2CH_2Br), 34.1 (CH₂Br), 61.7 (CH₂N), 127.4 (C5'), 128.1 (C5), 138.1 (C6'), 139.6 (C2'), 142.5 (C6), 143.3 (C3'), 143.9 (C2), 144.2 (C3), 144.8 (C4), 146.5 (C4'). 3-(14-Bromotetradecyl)-1-[14-(pyridin-3-io)tetradecyl]pyridinium bromide was neutralised as before to afford 3-(14-bromotetradecyl)-1-(14-pyridin-3-yltetradecyl)pyridinium bromide (38) (quant.) as a pale yellow oil; δ_H (200MHz; CDCl₃) 1.23-1.42 (40H, br m, CH₂), 1.57-1.89 (6H, m, C(3')CH₂CH₂, C(3)CH₂CH₂ and CH₂CH₂Br), 1.98-2.10 (2H, m, CH₂CH₂N), 2.62 (2H, t, J7.5Hz, C(3')CH₂), 2.90 (2H, t, J8Hz, C(3)CH₂), 3.41 (2H, t, J7Hz, CH₂Br), 4.97 (2H, t, J7.5Hz, CH₂N), 7.27 (1H, dd, J8, 5.5Hz, C(5')H), 7.56 (1H, d, J8Hz, C(4')H), 8.02 (1H, dd, J8, 6Hz, C(5)H), 8.22 (1H, d, J8Hz, C(4)H), 8.43-8.46 (2H, m, C(2')H and C(6')H), 9.15 (1H, s, C(2)H), 9.27 (1H, d, J6Hz, C(6)H); m/z (FAB) 629.5 ([M-Br]+, 81Br, 96%), 627.5 ([M-Br]+, ⁷⁹Br, 100), 274 (C₁₉H₃₂N+, 24); HRMS found 629.4250, C₃₈H₆₄BrN₂ ([M-Br]+, 81Br) requires 629.4232.

Synthesis of cyclostellettamine F (6)

The title compound was synthesised similarly to 1, using 3-(14-bromotetradecyl)-1-(14-pyridin-3-yltetradecyl)pyridinium bromide (38) (658mg, 0.93mmol) in butan-2-one (9ml) and CHCl₃ (1ml), and NaI (306mg, 2.04mmol) in butan-2-one (100ml) to afford *cyclostellettamine* F (6) (486mg, 65%) as an off-white powder; m.p. 225-227°C (lit. [11] m.p. 227-231°C); (Found: C, 56.7; H, 8.35; N, 3.5. $C_{38}H_{64}I_2N_2$ requires C, 56.9; H, 8.05; N, 3.5%); R_f 0.24 (Al₂O₃; CH₂Cl₂: MeOH; 9:1); v_{max} (KBr disk)/cm⁻¹ 3017m, 2921s, 2850s, 1627m, 1504m, 1465m, 691m; δ_H (200MHz; CDCl₃: CD₃OD; 9:1) 1.05-1.28 (40H, br m, CH₂), 1.65 (4H, br s, C(3)CH₂CH₂), 1.95 (4H, br s, NCH₂CH₂), 2.83 (4H, t, \mathcal{F} .5Hz, C(3)CH₂), 4.68 (4H, t, \mathcal{F} .7Hz, NCH₂), 7.96 (2H, dd, \mathcal{F} 8, 6Hz, C(5)H), 8.23 (2H, d, \mathcal{F} 8, C(4)H), 8.86 (2H, d, \mathcal{F} 6, 4Hz, C(6)H), 8.96 (2H, s, C(2)H); δ_C (50MHz; CDCl₃: CD₃OD; 9:1) 25.4, 28.1, 28.5 and 28.8 (4 x CH₂), 30.0 (C(3)CH₂CH₂), 31.2 (NCH₂CH₂), 32.2 (C(3)CH₂), 61.7 (NCH₂), 128.3 (C5), 142.2 (C6), 143.9 (C2), 144.4 (C3), 145.5 (C4); m/z (FAB) 675.5 ([M-I]+, 19%), 548.5 (41), 274 ([M-2I]²⁺, 100); HRMS found 675.4107, $C_{38}H_{64}IN_2$ ([M-I]+) requires 675.4114.

Synthesis of 1,20-diazatricyclo[33.3.1.1^{16,20}]tetraconta-16,35-diene (44)

The title compound was synthesised similarly to 39, using cyclostellettamine F (6) (88mg, 110 μ mol) and NaBH₄ (25mg, 660 μ mol) in MeOH (40ml) and CH₂Cl₂ (10ml), to afford 1,20-diazatricyclo[33.3.1.1^{16,20}]tetraconta-16,35-diene (44) (53mg, 86%) (<6% of the tetrahydropyridine regioisomer) as a white solid; m.p. 87-89°C; R_f 0.27 (base-washed SiO₂; PE

40-60: EtOAc: Et₃N; 97:3:2); v_{max} (KBr disk)/cm⁻¹ 2917s, 2850s, 1471m, 1176m, 1134m, 944m; δ_{H} (200MHz; CDCl₃) 1.26 (44H, br s, CH₂), 1.46-1.50 (4H, m, NCH₂CH₂CH₂), 1.94 (4H, br t, J7Hz, C(3)CH₂), 2.15 (4H, br s, C(5)H₂), 2.35-2.43 (4H, m, NCH₂(CH₂)₂), 2.49 (4H, t, J5.5Hz, C(6)H₂), 2.83 (4H, br s, C(2)H₂), 5.43 (2H, br s, C(4)H); δ_{C} (50MHz; CDCl₃) 25.8, 26.9, 27.3, 27.7, 29.1, 29.2, 35.4, 50.6, 55.4 and 58.9 (10 x CH₂), 119.0 (CH), 136.6 (quaternary); m/z (APCI) 555.5 (MH⁺, 100%); HRMS found 555.5612, C₃₈H₇₁N₂ (MH⁺) requires 555.5617.

Acknowledgements

We would like to thank Robin Proctor and Elizabeth McGuinness, for their expert and speedy assistance with mass spectrometry and nmr spectroscopy respectively, and EPSRC (DRS) for support of this work.

References

- [1] Fusetani N, Asai N, Matsunaga S, Honda K, Yasumuro S. Tetrahedron Lett. 1994;35:3967-3970.
- [2] Anan H, Seki N, Noshiro O, Honda K, Yasumuro K, Ozasa T, Fusetani N. Tetrahedron 1996;52:10849-10860.
- [3] Baldwin JE, Whitehead RC. Tetrahedron Lett. 1992;33:2059-2062.
- [4] Anderson RJ, Van Soest RWM, Kong F. 3-Alkylpiperidine Alkaloids Isolated from Marine Sponges in the Order Haplosclerida. In: Pelliter SW, editor. Alkaloids: Chemical and Biological Perspectives. London: Pergamon Press, 1996;10:302-352.
- [5] Baker BJ. β-Carboline and Isoquinoline Alkaloids from Marine Organisms. In: Pelliter SW, editor. Alkaloids: Chemical and Biological Perspectives. London: Pergamon Press, 1996;10:358-407.
- [6] Tsuda M, Kobayashi J. Heterocycles 1997;46:765-794.
- [7] Matzanke N, Gregg RJ, Weinreb SM. Org. Prep. Proced. Int. 1998;30:1-51.
- [8] Magnier E, Langlois Y. Tetrahedron 1998;54:6201-6258.
- [9] Baldwin JE, Melman A, Lee V, Firkin CE, Whitehead RC. J. Am. Chem. Soc. in press.
- [10] Baldwin JE, Claridge TDW, Culshaw AJ, Heupel FA, Lee V, Spring DR, Whitehead RC, Boughtflower RJ, Mutton IM, Upton RJ. Angew. Chem. in press.
- [11] Wanner MJ, Koomen G-J. Eur. J. Org. Chem. 1998:889-895.
- [12] Morimoto Y, Yokoe C. Tetrahedron Lett. 1997;38:8981-8984.
- [13] Miyashita M, Yoshikoshi A, Grieco PA. J. Org. Chem. 1977;42:3772-3774.
- [14] Davies-Coleman MT, Faulkner DJ, Dubowchik GM, Roth GP, Polson C, Fairchild C. J. Org. Chem. 1993;58:5925-5930.
- [15] Kang S-K, Kim W-S, Moon B-H. Synthesis 1985:1161-1162.
- [16] Rao AVR, Reddy GR, Rao BV. J. Org. Chem. 1991;56:4545-4547.
- [17] Yamada A, Kitamura H, Yamaguchi K, Fukuzawa S, Kamijima C, Yazawa K, Kuramoto M, Wang G-Y-S, Fujitani Y, Uemura D. Bull. Chem. Soc. Jpn. 1997;70:3061-3069.
- [18] Kaiser EM. Tetrahedron 1983;39:2055-2064.
- [19] Trécourt F, Gervais B, Mongin O, Le Gal C, Mongin F, Quéguiner G. J. Org. Chem. 1998;63:2892-2897.
- [20] Bluhm LH, Li T. Tetrahedron Lett. 1998;39:3623-3626.