A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine

Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

Article info
Article history:
Received 23 January 2017
Accepted 26 February 2017
Available online 28 February 2017

Keywords:
Natural products
Diversity-oriented synthesis
Complexity-to-diversity
Library synthesis
Scaffold
Chemical space

Abstract
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections.

Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability.

Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated.

1. Introduction

1.1. History

In the 1990s, with the advent of high-throughput screening and combinatorial chemistry, the drug discovery industry moved towards the rapid and efficient synthesis of large collections of compounds. It was hoped that by screening thousands (and even millions) of compounds, multiple novel therapeutic leads would be identified. Unfortunately, this expected surge in productivity did not materialise. This disappointing degree of productivity has been primarily attributed to the relative lack of structural diversity within the libraries.

Typically, such libraries were comprised of flat, sp² rich and structurally similar compounds. As a result, there has been a drive in recent years to develop robust methodologies that allow for the rapid generation of compounds possessing more complex and diverse sp³-rich architectures.

1.2. Natural products

Natural products represent a highly diverse and structurally innovative compound class. They possess significant sp³ character, chirality, diverse core scaffolds, differing ratios of hetero to non-hetero atoms and, computationally, occupy a larger fraction of chemical space than typical combinatorial libraries. As such, natural products play a crucial role in the discovery of drugs.

Abbreviations: ADMET, adsorption distribution metabolism excretion and toxicity; CtD, complexity-to-diversity; DCC, N,N'-dicyclohexylcarbodiimide; DCE, 1,2-dichloroethane; DIPEA, N,N'-diisopropylethylamine; DMAP, 4-dimethylaminopyridine; DMF, N,N'-dimethylformamide; DMSO, dimethyl sulfoxide; DOS, diversity-oriented synthesis; EDC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimine; FDA, US food and drugs administrations; HATU, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate; HTS, high-throughput screening; NCE, new chemical entities; PMI, principal moments of inertia; PPI, protein-protein interaction; PTSA, para-toluene sulfonic acid; TEA, triethylamine; THF, tetrahydrofuran.

* Corresponding author.
E-mail address: spring@ch.cam.ac.uk (D.R. Spring).

http://dx.doi.org/10.1016/j.bmc.2017.02.060
0968-0896/© 2017 Elsevier Ltd. All rights reserved.
Despite the number of new chemical entities (NCEs) having fallen in recent years, the number of natural product and natural product-derived NCEs has remained relatively high; they are responsible for approximately 33% of all small molecule drugs approved from 1981 to 2014.4,9–17

Despite their key role in drug development, natural products are underrepresented in compound screening collections. This is attributed to the challenges associated with their identification, isolation and synthesis. In recent years, a variety of strategies have been reported to tackle this issue and deliver libraries of natural product-like compounds, including utilisation of simplified core motifs, diverted total synthesis18,19 and diversity-oriented synthesis (DOS).20–28 However, whilst natural products and their derivatives have featured as the end-goal in many drug discovery programs (both DOS-focused and otherwise), their use as starting materials in the manufacture of compound libraries remains relatively rare. Recent years have witnessed a growing interest in the development of strategies for the synthesis of complex and diverse compounds from natural products.29–31

One such approach pioneered by Hergenrother and co-workers, is referred to as "complexity-to-diversity (CtD)"; this involves the production of complex natural product-like libraries via the controlled application of ring distortion reactions on readily available natural products.12,21,30–32 The CtD approach, which was inspired by nature’s proclivity to manufacture complex natural products from common intermediates, enables natural products which are already inherently structurally complex, to be rapidly converted into markedly different core scaffolds. The CtD strategy has been successfully applied to several readily available natural products, including gibberellic acid, adrenosterone, quinine, abietic acid and fumagillol.21,30–32

1.3. Macrocycles

Macrocycles (compounds containing a ring size of 12 atoms or more) have been shown to exhibit a diverse range of biological activities and feature in a variety of marketed drugs.37–39 More specifically, natural-product derived macrocycles, of which over 100 are found as FDA-approved drugs, have demonstrated excellent efficacy as antibiotics and anticancer drugs.40–45 They have been shown to exhibit good physicochemical and pharmacokinetic properties, binding with high affinity and selectivity to targets.42,46

Macrocycles possess unique structural properties that separate them from their acyclic small molecule counterparts and to which much of their useful biological activity is attributed. In particular, their potency is credited to their structural pre-organisation and ability to interact with multiple binding sites across a large area.46

In addition, acyclic compounds suffer major entropic loss upon binding to proteins due to the restriction of their conformational degrees-of-freedom. This effect is less prominent during macrocycle binding, due to a higher level of pre-organisation.47–49 Even with a restricted number of conformations, macrocycles still possess sufficient flexibility to allow them to mould to a protein surface.50–52 As such, they represent excellent synthetic targets and show great potential in succeeding where small molecules have previously failed, especially in the modulation of PPIs.53,54

Their lack of compliance with Lipinski’s “rule of five” bears some of the responsibility for the slow uptake of macrocycles in medicinal chemistry and HTS campaigns.55 Furthermore their perceived synthetic intractability alongside a lack of understanding of their ADMET properties has led to concern over their suitability as pharmaceutical leads.56 Despite the advantages illustrated above, macrocyclic compounds are severely under-represented and under-exploited within the drug discovery industry.52 As of 2008, almost half of all new small molecule drugs are generated synthetically whilst almost all of their macrocyclic counterparts are derived from natural products with minimal decoration to their structures.46 As such, there is an unmet need for a robust methodology for the production of structurally diverse macrocycles.

1.4. Summary

Herein, we report the development of a novel complexity-to-diversity (CtD) approach for the synthesis of libraries of novel, structurally complex and diverse macroyclic scaffolds from natural product starting materials [Scheme 1]. This approach exploits the inherent structural and stereochemical complexity in natural products in order to rapidly generate diversity and complexity through the use of simple chemistry. In this proof-of-concept study, the natural product quinine was used as the foundation for the library synthesis and six novel, structurally diverse, highly complex and functionalised macrocycles were generated.

2. Results and discussion

2.1. Aims

We considered that the natural product starting materials to be used in the CtD strategy should ideally be inexpensive, readily available, structurally interesting and feature a selection of chemically distinct functional groups that would act as handles for diversification. Based upon these criteria, we selected the alkaloid quinine for initial proof-of-concept studies. Furthermore, its historical use as an antimalarial drug suggests that its inherent complexity is sufficient to achieve biological selectivity, and with its two discrete quinoline and quinuclidine cage ring systems, quinine possesses excellent structural complexity.

2.2. Strategy

Of the variety of known synthetic transformations of quinine,30,53–60 we identified two key conversions that would help in demonstrating our strategy.

Firstly, work carried out by Huigens III et al.30 demonstrated the successful Hoffmann degradation of quinine into quinotoxine – a promising transformation for this project. Not only would it yield a much more synthetically amenable secondary amine, but it would furnish another structural template for macrocycle construction.55 Secondly, work by Zhang et al.55 illustrated a successful thio-ene reaction upon quinine, allowing a facile means for functionalisation of the pendant alkene.55

Construction of these two additional core templates began with the boiling of quinine (1) in an aqueous acetic acid solution, which promoted acid-catalysed degradation to afford quinotoxine 2. To form the final core scaffold, quinine (1) was heated overnight at 80 °C in neat mercaptoethanol to deliver diol 3 [Scheme 2].

With these three core templates in hand, we anticipated that we could construct three different structural types of macrocycle [Scheme 3a]. It was hoped that the first class of macrocycles (Mac1) could be constructed by esterifying general building blocks 4 to the pendant hydroxyl of quinine (1) to afford linear precursors of the form 5. Subsequent treatment with Grubbs’ II catalyst would then initiate ring-closing metathesis to yield scaffolds of the form Mac1.

Starting in a similar manner, the second class of macrocycles (Mac2) would begin with the chemoselective esterification of building blocks 6 to diol 3, followed by the coupling of building blocks 8 to the secondary alcohol to generate linear precursors 9 [Scheme 3b]. These azido-alkyne intermediates would then undergo copper-mediated click-type 1,3-dipolar cycloadditions to afford macrocyclic scaffolds of the form Mac2.
Finally, it was envisaged that we could deliver macrocycles of structural form Mac3 by a two-step sequence from quinotoxine (Scheme 3c). Initially, quinotoxine would be treated with a selection of acids to construct amides. Exposure of these amides to the appropriate cyclisation conditions for olefin metathesis, it was hoped, would promote formation of the desired macrocycles (Mac3).

To test the hypothesis suggested above, we proposed to construct six macrocyclic scaffolds, two based on each structural class (Scheme 4). However, the modular nature of this strategy provides the opportunity for substituting both the building blocks and the natural product core. Thus there is great scope for expanding the breadth of chemical space interrogated by these diverse libraries.

2.3. Building blocks

Whilst some building blocks were commercially available, others required a short sequence of steps to synthesise.

Formation of acid 18 was achieved in a four-step sequence from commercially available ethyl glycinate hydrochloride 19 and 3-hydroxybenzaldehyde. The sequence was initiated by the alkylation of 3-hydroxybenzaldehyde with allyl bromide to yield ether 22. Subsequent reductive amination with the hydrochloride furnished amine 23.

Thiopheneacetic acid was treated with oxalyl chloride and catalytic DMF to generate the corresponding acid chloride, which was subsequently quenched with amine 30 to deliver amide 31. LiOH-mediated hydrolysis conditions furnished the desired building block acid 28. Following the protocol outlined by Beckmann et al., treatment of benzyl chloride 32 with NaN₃ in DMSO successfully delivered the second building block acid 33 (Scheme 7).

2.4. Macrocycles of the structural class Mac1

It was anticipated that macrocycles 12 and 13 could be constructed in two steps from quinine (1). Synthesis began with the DCC-mediated esterification of quinine (1) with acids 18 and 34 to deliver amide 24. Saponification of the amide with LiOH afforded the desired acid 18 (Scheme 5).

Treatment of methyl 5-(chloromethyl)-2-furoate 25 with NaN₃, in line with the procedure detailed by Beckmann et al., afforded azido compound 26, after which a subsequent LiOH-mediated saponification furnished the desired carboxylic acid 27 (Scheme 6). We hoped to furnish acid 28 in a three-step sequence from readily available methyl bromoacetate 29. Exposure of the methyl ester 29 to propargylamine and TEA yielded amine 30. Treatment of 4-bromophenylacetic acid with oxalyl chloride generated the corresponding acid chloride, which was subsequently quenched with amine 30 to deliver amide 31. LiOH-mediated hydrolysis conditions furnished the desired building block acid 28. Following the protocol outlined by Beckmann et al., treatment of benzyl chloride 32 with NaN₃ in DMSO successfully delivered the second building block acid 33 (Scheme 7).
possible to determine the stereochemistry of the resulting alkene in macrocycle 13, the alkene in macrocycle 12 was determined to have trans geometry from two-dimensional NMR data.

2.5. Macrocycles of the structural class Mac2

It was envisaged that macrocycles 14 and 15 could be furnished in a three-step sequence from diol 3 (Scheme 9). Synthesis began with the coupling of acids onto the primary hydroxyl of compound 3. EDC-mediated esterification of the core compound with acid 33 afforded intermediate 38, whilst the same conditions effected intermediate 39 from 4-pentynoic acid 37. Subsequently, we attempted the esterification of 38 with acid 28 to afford linear precursor 40. Whilst LCMS data indicated formation of 40 in the reaction mixture, it was not possible to obtain a spectroscopically pure sample before the material completely degraded. So the material was carried through without purification. The furnishing of linear precursor 41 was achieved by the DCC-mediated esterification of intermediate 39 with acid 27. Treatment of both linear precursors with CuI promoted the desired click cycloaddition step and afforded macrocycles 15 and 14, respectively (Scheme 9).

2.6. Macrocycles of the structural class Mac3

Macrocycles 16 and 17 were synthesized via a two-step sequences from quinotoxine. Synthesis began with HATU-mediated amide coupling of quinotoxine 2 and the acids 8-nonenoic acid and undecylenic acid to furnish linear precursors 42 and 43 respectively. Exposure of these alkene-containing intermediates to Grubbs II triggered ring-closing metathesis and delivered two macrocyclic scaffolds: 16 and 17 respectively (Scheme 10). Both macrocycles were isolated as single isomers but in both cases the double bond geometry could not be determined.

3. Molecular shape analysis

It has been argued that the overall molecular shape diversity of a compound library is the most fundamental indicator of overall biological (functional) diversity. To assess the 3D shape diversity of the six macrocycles, we carried out a principal moments of inertia (PMI) analysis. PMI plots are often used to visually represent the shape diversity of compounds of a collection in “molecular shape space” spanned by the three basic extreme shape types: “rod-like” (e.g., acetylene), “disk-like” (e.g., benzene) and “spherical” (e.g., adamantine). After an initial conformational search and energy minimisation on the DOS library, we selected the lowest energy conformations for each compound and calculated their principal moments of inertia (full details of the PMI analysis can be found in Section 5.3). We also computed the PMIs for 40 top-selling drugs, 60 natural products and 36 macrocycles in clinical development so that we could compare the shape diversity between these collections and our library. The PMI plot produced is shown below (Fig. 1a).

The collection of 40 top-selling drugs are mainly one- and two-dimensional, with very little three-dimensionality observed. In
Scheme 4. Proof-of-concept target macrocycles based on the three macrocyclic structural classes, Mac1, Mac2 and Mac3.

Scheme 5. Synthesis of building block 18.

contrast, the natural product, macrocyclic compound collection and our proof-of-concept library demonstrate much more three dimensional “spherical” character. It is pleasing to see that our small proof-of-concept library mimics the shape diversity of the natural product and macrocycle collections. Furthermore, we have included on the plot the natural product core, quinine, to demonstrate the breadth of shape diversity generated from a single compound. Taking this further, if we compare our PMI plot to a similar one constructed to assess Isidro-Llobet’s macrocycle library⁴⁷,65 (against the same reference set), we can see that both DOS libraries exhibit similar levels of shape diversity (Fig. 1b). This result is particularly pleasing, given that our collection is significantly smaller.

4. Conclusions

Herein we have reported a complexity-to-diversity (CtD) strategy for the diversity-oriented synthesis of structurally complex and diverse macrocycles from natural product starting materials. In this proof-of-concept study, quinine was used as the foundation for library synthesis and six novel, structurally diverse, highly complex and functionalised macrocycles were generated, each of which is based around a distinct molecular scaffold.

Our library showed excellent shape diversity in the PMI analysis, rivaling that of the natural product and macrocycles in clinical development reference sets. It also shows excellent shape diversity compared to a diverse macrocyclic library over thirty times its size. In principle, a wider range of building blocks could be employed in the routes described above in order to access additional macrocyclic compounds from quinine. This modular nature of the strategy should allow for easy substitution of building blocks and possibility or localised SAR studies upon hit identification. It is anticipated that our general CtD approach will prove applicable to a wider range of natural products and therefore represent a useful strategic method for the synthesis of complex and diverse macrocyclic scaffolds.

5. Materials and methods

5.1. General experimental

All non-aqueous reactions were performed in dry glassware under an atmosphere of N₂ using anhydrous solvents. Tetrahydrofuran was dried over sodium wire and distilled from a mixture of lithium aluminium hydride and calcium hydride with triphenyl methane as the indicator. CH₂Cl₂, toluene, methanol and acetonitrile were distilled from calcium hydride. Chemicals were purchased from commercial sources and used as received unless otherwise stated. Reactions were carried out at room temperature unless otherwise stated. Reactions at 0 °C were maintained using an ice/water bath and reactions at −78 °C were maintained using an acetone/dry ice bath.
Thin layer chromatography, used to analyse and monitor reaction progress, was carried out on Merck Kieselgel 60 F254 plates with visualisation by UV fluorescence ($\lambda_{\text{max}} = 254$ nm) or by staining with potassium permanganate. R_f values are quoted to the nearest 0.01. Flash column chromatography was performed using slurry-packed SiO$_2$ (Merck Grade 9385, 230–400 mesh) under positive pressure of compressed air. Automated chromatography was carried out using a Teledyne ISCO Combiflash® chromatography system.

Preparative HPLC purification was performed on an Agilent 1260 Infinity system fitted with a Supelcosil ABZ+Plus column (250 mm x 21.2 mm, 5 µm) using linear gradient systems (solvent A: 0.1% (v/v) TFA in water, solvent B: 0.05% (v/v) TFA in acetonitrile) at a flow rate of 20 mL min$^{-1}$.

Analytical HPLC analysis was performed on an Agilent 1260 Infinity system fitted with a Supelcosil ABZ+Plus column (150 mm x 4.6 mm, 3 µm) using linear gradient systems (solvent A: 0.05% (v/v) TFA in water, solvent B: 0.05% (v/v) TFA in acetonitrile) over 15 min at a flow rate of 1 mL min$^{-1}$. Retention times (tr) are reported to the nearest 0.01 min.

Infrared spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer. Absorption maxima (ν_{max}) are quoted in wavenumbers (cm$^{-1}$) and assigned as either: weak (w), medium (m), strong (s) or broad (br).
Melting points were obtained on a Buchi B-545 melting point apparatus and are uncorrected.

Optical rotations were recorded on an Anton-Paar MCP polarimeter. \(\alpha^20 \) values are reported in \(\text{10}^{-1} \text{deg cm}^2 \text{g}^{-1} \) at 589 nm, concentration (c) is given in g(100 mL)\(^{-1}\).

Proton nuclear magnetic resonance (\(^1\)H NMR) were recorded on the following instruments: Bruker DPX-400 (400 MHz), Bruker Avance 400 QNP (400 MHz), Bruker BB 500 (500 MHz) and Bruker Avance 500 Cryo Ultrashield (500 MHz). They were recorded at room temperature unless otherwise stated. Chemical shifts are referenced to the residual non-deuterated solvent peak and quoted in parts per million to the nearest 0.01. Coupling constants are quoted in Hertz to the nearest 0.1 Hz and the data is reported as follows: chemical shift, integration, multiplicity (s, singlet; d, doublet; t, triplet; dd, doublet of doublets; m, multiplet; br, broad), coupling constant(s) and assignment. Assignments are supported by either chemical shift, coupling constants, 2D experiments (COSY, HMQC, HMBC and NOESY) or by comparison with similar, fully characterised compounds.

Carbon nuclear magnetic resonance (\(^13\)C NMR) were recorded on the following instruments: Bruker DPX-400 (101 MHz), Bruker Avance 400 QNP (101 MHz), Bruker BB 500 (126 MHz) and Bruker Avance 500 Cryo Ultrashield (126 MHz). Chemical shifts are referenced to the residual non-deuterated solvent peak and quoted in parts per million to the nearest 0.1 ppm. Assignments are supported by either chemical shift, APT/DEPT, 2D experiments (HMQC and HMBC) or by comparison with similar, fully characterised compounds.

The numbering of molecules used for \(^{13}\)C and \(^1\)H NMR assignments does not conform to IUPAC standards.

Diastereotopic protons are identified as Hxa and Hxb (or Cxa and Cxb) where “x” is the numerical assignment and Hxa represents the higher shift. Terminal alkene protons are identified as Hxc and Hxt where “x” is the numerical assignment, “c” indicates a cis coupling constant has been observed and “t” indicates a trans coupling constant has been observed.

Low-resolution mass spectra (ESI) were recorded using an LCMS system (Agilent 1200 series LC with an ESI Multi-Mode Ionisation Waters ZQ spectrometer using MassLynx 4.0 software).

High-resolution mass spectrometry (HRMS) was carried out on a Micromass LCT Premier spectrometer using electron spray ionisation (ESI) or electron impact (EI) techniques. Masses are quoted within the 5 ppm error limit.

5.2. Methods

5.2.1. Quinotoxine (2)

Quinine (20.0 g, 61.6 mmol) was dissolved in H\(_2\)O (600 mL) and AcOH (50 mL) and heated at reflux for 118 h. The reaction mixture was quenched with an aqueous NaOH solution (25% by weight) and extracted with EtOAc (3 \times 600 mL). The organic extracts were combined, washed with H\(_2\)O (500 mL), brine (400 mL) and dried (MgSO\(_4\)). The solution was filtered and the solvent removed under reduced pressure to yield the title compound as a crude brown oil, which was used without further purification (18.8 g, 57.9 mmol, 94%).

\[R_f = 0.30 \text{ (10% methanol in CH\(_2\)Cl\(_2\), TEA-deactivated SiO\(_2\))} \]

\[\text{IR: } \lambda_{max} = 2924 \text{ (m, C=H), 1689 (m, C=O), 1617 (s, C=C), 1580 (w, C=C), 1506 (s, C=C).} \]

\[\text{\(^1\)H NMR (500 MHz, d\(_6\)-DMSO): } \delta_{H} = 8.88 \text{ (1H, d, J = 4.6 Hz, H5),} 8.01 \text{ (1H, d, J = 9.2 Hz, H3), 7.90 (1H, d, J = 4.3 Hz, H6), 7.69 (1H, d, J = 2.8 Hz, H9), 7.48 (1H, dd, J = 9.2, 2.8 Hz, H2), 6.17–6.09 (1H, m, H18), 5.11 (1H, dd, J = 17.1, 2.1 Hz, H19t), 5.07 (1H, dd, 10.4,} \]
A stirred solution of quinine (10.0 g, 30.8 mmol) in 2-mercaptoethanol (30 mL) was refluxed at 80 °C for 72 h after which the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography on silica, eluting with a gradient from 0% to 20% MeOH in CH2Cl2 to yield the title compound as a pale yellow foam (5.30 g, 13.2 mmol, 43%).

Rf = 0.13 (40% EtOAc in petroleum ether 40–60, TEA-deactivated silica), eluting with a gradient from 0% to 20% MeOH in CH2Cl2 to yield the title compound as a pale yellow foam (5.30 g, 13.2 mmol, 43%).

5.2.1.2. Diol (3).

To a stirred solution of 3-hydroxybenzaldehyde (8.0 g, 65.6 mmol) in acetonitrile (80 mL) was added allylbromide (11.0 mL, 131 mmol), KI (1.09 g, 6.56 mmol), 18-crown-6 (864 mg, 3.26 mmol) and K2CO3 (26.4 g, 191 mmol) at rt, after which the solution was refluxed at 75 °C for 18 h. The K2CO3 was filtered off and the solvent was removed under reduced pressure. H2O (100 mL) was added and the aqueous layer extracted with EtOAc (2 × 100 mL). The organic layer was separated, washed with brine (50 mL), dried (Na2SO4) and the solvent removed under reduced pressure to yield the title compound as an orange oil, which was used without further purification (10.5 g, 64.4 mmol, 98%).

Rf = 0.38 (5% EtOAc in hexane).

IR: \(\lambda_{\text{max}} = 3151 \) (w, C=H), 1681 (s, C=O), 1598 (s, C=C), 1483 (m, C=C), 1457 (m, C=C).

1H NMR (400 MHz, CDCl3): \(\delta_H = 7.73-7.44 \) (2H, m, H6 & H7), 7.36 (1H, dd, \(J = 2.0, 1.0 \) Hz, H9), 7.15 (1H, dt, \(J = 7.2, 2.4 \) Hz, H5), 5.96–6.09 (1H, dd, \(J = 17.2, 10.5, 5.2 \) Hz, H2), 5.40 (1H, dq, \(J = 17.3, 1.5 \) Hz, H11), 5.28 (1H, dq, \(J = 10.6, 1.4 \) Hz, H1c), 4.55 (2H, dt, \(J = 5.3, 1.4 \) Hz, H3)

13C NMR (101 MHz, CDCl3): \(\delta_C = 192.0 \) (C10), 159.1 (C4), 137.8 (C8), 132.7 (C2), 130.1 (C6), 123.5 (C7), 122.0 (C5), 118.0 (C1), 113.1 (C9), 68.9 (C3)

HRMS (ESI+): m/z found [M+H]+ 163.0751, C10H11O2 required 163.0754.

Modified from an unpublished procedure. Data consistent with that reported in the literature.

5.2.2.2. Ethyl (3-(allyloxy)benzyl)glycinate (23).

To a stirred solution of 22 (774 mg, 4.77 mmol) and ethyl glycine hydrochloride (1.00 g, 7.16 mmol) in DCE (30 mL), TEA (1.33 mL, 9.54 mmol) and 4Å molecular sieves were added. After 2 h, 50% of the required NaBH(OAc)3 (1.42 g, 6.68 mmol) was added and the final 50% added after an additional 20 min. The reaction was allowed to stir at rt for 12 h, after which it was quenched with saturated aqueous Na2CO3 solution (30 mL) and subsequently extracted with CH2Cl2 (3 × 30 mL). The organic extracts were combined, washed with brine (50 mL) and dried (MgSO4). The solution was filtered and solvent removed under reduced pressure. The...
crude product was purified by flash column chromatography (CombiFlash Companion), eluting with a gradient from 0% to 100% EtOAc in petroleum ether 40–60 to yield the title compound as a colourless oil (456.8 mg, 1.83 mmol, 38%).

Rf = 0.16 (40% EtOAc in petroleum ether 40–60).

IR: λmax = 2983 (w, C–H), 1734 (s, C=O), 1598 (m, C=C), 1585 (m, C=C).

3H NMR (500 MHz, CDCl3): δH = 7.25 (1H, t, J = 7.9 Hz, H6), 6.95–6.92 (2H, m, H5/H7/H9), 6.85–6.82 (1H, m, H5/H7/H9), 6.08 (1H, ddt, J = 17.4, 10.7, 5.2 Hz, H2), 5.44 (1H, dq, J = 17.4, 1.5 Hz, H11), 5.30 (1H, dq, J = 10.7, 1.2 Hz, H1c), 4.56 (2H, dt, J = 5.5, 1.5 Hz, H3), 3.81 (2H, s, H10/H11), 3.42 (2H, s, H10/H11), 4.22 (2H, q, J = 7.3 Hz, H13), 1.30 (3H, t, J = 7.3 Hz, H1t).

13C NMR (126 MHz, CDCl3): δC = 153.4 (C), 135.5 (sp2-C), 134.2 (C2), 129.0, 125.7, 122.6 (sp2-C), 117.4 (C1), 69.0 (C3), 60.5 (C13), 40.7, 34.8 (sp3-C), 14.2 (C14).

Quaternary carbons 4 and 8 were not observed. Due to the rotameric nature of the amide, carbons 15–20 were also not observed.

HRMS (ESI+): m/z found [M+H]+ 374.1429, C20H24O4NS required 374.1421.

Modified from a literature procedure.61 Novel compound.

5.2.2.3. Ethyl N-(3-(allyloxy)benzyl)-N-(2-(thiophen-2-yl)acetyl)glycinate (24).

Acyl chloride preparation: To a stirred solution of 2-thiopepaneacetic acid (260 mg, 1.83 mmol) and oxalyl chloride (201.238 mmol) in CH2Cl2 (6 mL), catalytic amounts of DMF were added. After stirring for 5 h until TLC indicated complete turnover, the residue was diluted with EtOAc (20 mL), washed successively with saturated aqueous NaHCO3 solution (20 mL), aqueous HCl (excess) were added. After vigorous stirring for 6 h the reaction was acidified to pH 3 with an aqueous HCl solution (37%) and extracted with Et2O (3 × 30 mL). The organic extracts were combined, washed with H2O (30 mL), brine (30 mL) and dried (MgSO4). The solvent was removed under reduced pressure to yield the title compound as a pale yellow oil, which was used without further purification (122 mg, 353 mmol, 89%).

IR: λmax = 2929 (w, C–H), 1733 (s, C=O), 1647 (s, C=C), 1600 (s, C=C).

1H NMR (500 MHz, d6-DMSO, 120 °C): δH = 7.40 (1H, dd, J = 5.0, 3.1 Hz, ArH), 7.25–7.22 (2H, m, ArH), 7.03 (1H, dd, J = 4.7, 1.1 Hz, ArH), 6.88–6.85 (1H, m, ArH), 6.83–6.80 (2H, m, ArH), 6.05 (1H, ddt, J = 17.5, 10.7, 5.3 Hz, H2), 5.39 (1H, dq, J = 17.2, 1.7 Hz, H11t), 5.25 (1H, dq, J = 10.5, 1.5 Hz, H1ct), 4.60 (2H, br s, H10/H11t), 4.55 (2H, dt, J = 5.2 Hz, 1.6 Hz, H3), 4.00 (2H, br s, H10/H11t), 3.75 (2H, br s, H10/H11t).

13C NMR (126 MHz, d6-DMSO, 120 °C): δC = 171.1 (C12), 159.4 (C4), 139.4, 135.8 (C8, C7), 134.3 (C2), 130.0, 129.2, 125.7, 122.6, 120.5 (sp2-C), 117.5 (C1), 114.7, 114.6 (sp2-C) 69.1 (C3), 34.9 (C). Due to the rotameric nature of the amide, two carbons out of 10, 11 and 16 were not observed. C13 was also not observed.

HRMS (ESI+): m/z found [M+H]+ 346.1108, C18H20O4NS required 346.1108.

5.2.2.5. Methyl 5-(azidomethyl)furan-2-carboxylate (26).

A solution of methyl 5-(chloromethyl)-2-furoate (800 mg, 4.60 mmol) and NaN3 (897 mg, 13.8 mmol) in DMF (10 mL) was heated at 65 ºC for 1.5 h. The solution was diluted with EtOAc (50 mL), washed successively with H2O (40 mL), saturated aqueous LiCl solution (2 × 40 mL), brine (40 mL) and dried (MgSO4). The solution was filtered and the solvent removed under reduced pressure to yield the title compound as an orange oil, which was used without further purification (695 mg, 3.84 mmol, 83%).

IR: λmax = 2982 (w, C–H), 1742 (s, C=O), 1649 (s, C=C), 1601 (m, C=C).

1H NMR (500 MHz, d6-DMSO, 120 °C): δH = 7.41 (1H, dd, J = 5.0, 2.9 Hz, ArH), 7.26–7.22 (2H, m, ArH), 7.02 (1H, dd, J = 5.0, 0.8 Hz, ArH), 6.88–6.85 (1H, m, ArH), 6.84–6.80 (2H, m, ArH), 6.04 (1H, ddt, J = 17.4, 10.5, 5.5 Hz, H2), 5.38 (1H, dq, J = 17.2, 1.8 Hz, H1t), 5.26 (1H, dq, J = 10.7, 1.3 Hz, H1c), 4.60 (2H, br s, H10/H11t), 4.55 (2H, dt, J = 5.2, 1.6 Hz, H3), 4.11 (2H, q, J = 7.1 Hz, H13t), 4.07 (2H, br s, H10/H11t), 3.76 (2H, br s, H16), 1.20 (3H, t, J = 7.1 Hz, H14).

13C NMR (126 MHz, d6-DMSO, 120 °C): δC = 171.1 (sp2-C), 135.5 (sp3-C), 134.2 (C2), 129.0, 125.7, 122.6 (sp2-C), 117.4 (C1), 69.0 (C3), 60.5 (C13), 40.7, 34.8 (sp3-C), 14.2 (C14).
To a stirred solution of 26 (650 mg, 3.59 mmol) in THF (17 mL) was added an aqueous LiOH solution (1.0 M, 17 mL). After stirring for 2 h the reaction was acidified to pH 3 with an aqueous HCl solution (3.0 M) and the solvent was removed under reduced pressure. The product was extracted with Et₂O (2 × 50 mL). The organic extracts were combined, washed with H₂O (40 mL), brine (40 mL) and dried (MgSO₄). The solution was filtered and the solvent was removed under reduced pressure to yield the title compound as a colourless oil (901 mg, 2.78 mmol, 71%).

IR: \(\lambda_{\text{max}} = 2856 \) (br, O-H), 2084 (m, -N₃), 1683 (s, C=O), 1596 (m, C=C), 1536 (s, C=C).

\(^1H \) NMR (400 MHz, d₆-DMSO, 120 \(^\circ \)C): \(\delta_H = 7.33 \) (1H, d, \(J = 3.4 \) Hz, H4), 6.54 (1H, d, \(J = 3.1 \) Hz, H5), 4.44 (2H, s, H7).

\(^{13}C \) NMR (101 MHz, d₆-DMSO, 120 \(^\circ \)C): \(\delta_C = 163.1 \) (C2), 154.5 (C3/C6), 144.0 (C3/C6), 120.9 (C4), 111.3 (C5), 47.0 (C7).

Known compound.

5.2.2.7. Methyl prop-2-yn-1-ylglycinate (30).

To a stirred solution of methyl bromoacetate (3.00 mL, 31.7 mmol), propargylamine (1.35 mL, 21.1 mmol) and TEA (4.42 mL, 31.7 mmol) in acetonitrile (60 mL) was stirred at 50 \(^\circ \)C for 23 h. The solution was filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography on silica, eluting with a gradient from 10% to 40% EtOAc in petroleum ether 40–60 to yield the title compound as a colourless oil (901 mg, 2.78 mmol, 46%).

IR: \(\lambda_{\text{max}} = 3290 \) (w, C=H), 2953 (w, C=H), 1743 (s, C=O), 1735 (s, C=O).

\(^1H \) NMR (500 MHz, CDCl₃): \(\delta_H = 7.48 \) (2H, d, \(J = 8.4 \) Hz, H11), 7.21 (2H, d, \(J = 8.4 \) Hz, H10), 4.30–4.21 (4H, m, H5, H3, H4), 3.76 (2H, br s, H8), 3.68 (3H, s, H1), 3.02 (1H, br s, H6).

\(^{13}C \) NMR (126 MHz, CDCl₃): \(\delta_C = 170.6, 169.6 \) (C2, C7), 135.1 (sp²-C), 131.9, 131.4 (C10, C11), 120.2 (sp²-C), 79.2 (C2/C5), 52.0 (C1), 38.9 (sp³-C). Due to the rotameric effects of the amide, carbons 5/6 and 2 from 3/4/8 were not observed.

HRMS (ESI+): \(m/z \) found [M+H]+ 324.0225, C₁₄H₁₂O₃N₇Br required 324.0230.

Modified from a literature procedure.

5.2.2.8. Methyl N-((2-(4-bromophenyl)acetyl)-N-(prop-2-yn-1-yl)glycinate (31).

Acyl chloride preparation: To a stirred solution of 4-bromophenylacetic acid (1.10 g, 5.12 mmol) and oxalyl chloride (565 µL, 6.68 mmol) in CH₂Cl₂ (15 mL), catalytic amounts of DMF were added. After stirring for 8 h until TLC indicated complete turnover, the solvent was removed under reduced pressure and the acyl chloride was used without further purification.

Amide formation: To a stirred solution of the freshly prepared acyl chloride in CH₂Cl₂ (15 mL, 30 mg, 3.93 mmol) and saturated aqueous NaHCO₃ solution (excess) were added. After vigorous stirring for 15 h, the layers were separated and the organic phase was washed successively with aqueous HCl solution (1.0 M, 20 mL), saturated aqueous NaHCO₃ solution (20 mL), H₂O (20 mL), brine (20 mL) and dried (MgSO₄). The solution was filtered and solvent removed under reduced pressure. The crude product was purified by flash column chromatography on silica, eluting with a gradient from 10% to 50% EtOAc in petroleum ether 40–60 to yield the title compound as a colourless oil (901 mg, 2.78 mmol, 71%).

IR: \(\lambda_{\text{max}} = 3284 \) (w, C=H), 2953 (w, C=H), 1743 (s, C=O), 1735 (s, C=O).

\(^1H \) NMR (500 MHz, d₆-DMSO, 120 \(^\circ \)C): \(\delta_H = 7.48 \) (2H, d, \(J = 8.4 \) Hz, H11), 7.21 (2H, d, \(J = 8.4 \) Hz, H10), 4.30–4.21 (4H, m, H5, H3, H4), 3.76 (2H, br s, H8), 3.68 (3H, s, H1), 3.02 (1H, br s, H6).

\(^{13}C \) NMR (126 MHz, d₆-DMSO, 120 \(^\circ \)C): \(\delta_C = 170.6, 169.6 \) (C2, C7), 135.1 (sp²-C), 131.9, 131.4 (C10, C11), 120.2 (sp²-C), 79.2 (C2/C5), 52.0 (C1), 38.9 (sp³-C). Due to the rotameric effects of the amide, carbons 5/6 and 2 from 3/4/8 were not observed.

HRMS (ESI+): \(m/z \) found [M+H]+ 324.0225, C₁₄H₁₂O₃N₇Br required 324.0230.

Modified from a literature procedure.

5.2.2.9. N-((2-(4-Bromophenyl)acetyl)-N-(prop-2-yn-1-yl)glycine (28).

To a stirred solution of 31 (865 mg, 2.67 mmol) in THF (13 mL) was added an aqueous LiOH solution (1.0 M, 13 mL). After stirring for 21 h the reaction was acidified to pH 3 with an aqueous HCl solution.
solution (3.0 M) and the solvent was removed under reduced pressure. The product was extracted with EtO₂ (2 × 20 ml). The organic extracts were combined, washed with H₂O (30 ml), brine (30 ml) and dried (MgSO₄). The solvent was removed under reduced pressure to yield the title compound as an amorphous white solid, which was used without further purification (691 mg, 2.23 mmol, 83%).

IR: λmax = 3260 (w, C=H), 2929 (br, O=H), 1744 (s, C=O), 1608 (s, C=O).

A stirred solution of 3-(chloromethyl)benzoic acid (1.50 g, 8.79 mmol) and NaN₃ (686 mg, 10.6 mmol) in DMSO was stirred at 30°C for 20 min. The product was extracted with Et₂O (20 ml), washed successively with H₂O (20 ml), brine (20 ml) and dried (MgSO₄). The solvent was removed under reduced pressure to yield the title compound as a white solid, which was used without further purification (1.10 g, 6.21 mmol, 71%). m.p. = 72–74°C.

HRMS (ESI+): m/z found [M+Na⁺] 331.9897, C₁₃H₁₂O₃N₇NaBr required 331.9893.

5.2.2.10. 3-(Acidomethyl)benzoic acid (33).

A stirred solution of 3-(chloromethyl)benzoic acid (1.50 g, 8.79 mmol) and NaN₃ (686 mg, 10.6 mmol) in DMSO was stirred at 30°C for 1.5 h. The reaction mixture was diluted with EtOAc (50 ml), washed successively with H₂O (2 × 20 ml), brine (30 ml) and dried (MgSO₄). The solvent was filtered and the solvent removed under reduced pressure to yield the title compound as an amorphous white solid, which was used without further purification (1.10 g, 6.21 mmol, 71%). m.p. = 72–74°C.

IR: λmax = 2740 (br, O=H), 2087 (s, C=O), 1607 (w, C=C), 1587 (w, C=C).

A solution of quinine (43.8 mg, 135 μmol), 18 (46.6 mg, 135 μmol) and DMAP (1.70 mg, 13.5 μmol) in CH₂Cl₂ (0.5 ml) was cooled to 0°C, after which a solution of DCC (30.7 mg, 149 μmol) in CH₂Cl₂ (0.5 ml) was added. The solution was stirred at rt for 21 h, after which an additional 0.5 eq. of DCC was added. Stirring was allowed to continue at rt for 27 h. The reaction mixture was diluted with CH₂Cl₂ (10 ml) and washed successively with saturated aqueous NaHCO₃ solution (2 × 20 ml), H₂O (20 ml), brine (20 ml) and dried (MgSO₄). The solution was filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography on silica, eluting with a gradient from 0% to 4% methanol in EtOAc with 1% TEA to yield the title compound as an amorphous pale yellow solid (40.4 mg, 62.0 μmol, 46%).

HRMS (ESI+): m/z found [M+H⁺] 652.2839, C₃₈H₄₁O₅N₃S required 652.2840.

Modified from a literature procedure. Data consistent with that reported in the literature. Literature procedure followed. A solution of quinine (1.00 g, 3.08 mmol), undecylenic acid (622 μL, 3.08 mmol) and DMAP (37.6 mg, 308 μmol) in CH₂Cl₂ (6 ml) was cooled to 0°C, after which a solution of DCC (700 mg, 3.39 mmol) in CH₂Cl₂ (2 ml) was added. The solution was stirred...
at rt for 24 h. The reaction mixture was diluted with CH₂Cl₂ (20 mL) and washed successively with saturated aqueous NaHCO₃ solution (2 × 30 mL), H₂O (30 mL), brine (30 mL) and dried (MgSO₄). The solution was filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography on TEA-deactivated silica, eluting with CH₂Cl₂ to yield the title compound as a viscous pale yellow oil (950 mg, 1.94 mmol, 63%).

R₁ = 0.79 (10% methanol in CH₂Cl₂, TEA-deactivated SiO₂).

α₀/β = –22.0 (c = 0.05 in MeOH).

IR: νmax = 2917 (s, C=O), 1623 (m, C=O), 1508 (s, C=O).

δH NMR (400 MHz, d4-MeOH): δ H₂ = 2.17, 1.68 (2H, m, H14), 1.57–1.25 (13H, m, H12b, H21, H22, H23, H24, H25, H26, H27).

δ13C NMR (126 MHz, d6-DMSO): δ C₁ = 72.9 (C21), 1509 (m, C₁), 1731 (C1), 147.3 (C5), 144.6 (sp²-C), 143.2 (sp²-C), 141.6, 138.9 (C18, C30), 131.3 (C3), 126.9 (sp²-C), 121.5 (C2), 118.8 (C6), 114.3, 113.9 (C19, C31), 101.3 (C9), 73.5 (C10), 58.9 (C11), 56.4 (C16), 55.4 (C20), 42.2 (C15), 39.6 (C17), 34.3 (C22), 33.6 (C29), 29.1, 29.0, 28.1, 28.9, 28.8 (sp²-C), 27.7 (C14), 27.5 (C13), 24.8 (C23), 24.4 (C12).

HRMS (ESI+): m/z found [M+H]+ 491.3289, C₃₁H₄₃O₃N₂ required 491.3286.

Modified from a literature procedure.

5.2.3.3. Macrocycle (12).

35 (33.0 mg, 50.6 µmol) and Grubbs’ 2nd generation catalyst (3.00 mg, 5.06 µmol) were dissolved in CH₂Cl₂ (10 mL) and refluxed in a sealed tube at 80 °C for 16 h. The solvent was removed under reduced pressure and the crude product was purified by preparative HPLC (30–65%B) to yield the title compound as an amorphous pale yellow solid (3.10 mg, 5.00 µmol, 10%).

R₁ = 0.30 (10% methanol and 1% TEA in Et₂O).

α₀/β = –1.00 (c = 0.1 in CHCl₃).

IR: λmax = 2928 (s, C-H), 2853 (m, C-H), 1735 (s, C=O), 1622 (m, C=O), 1509 (m, C=O).

91% HRMS (ESI+): m/z found [M+H]+ 491.3289, C₃₁H₄₃O₃N₂ required 491.3286.

To a stirred solution of 36 (50.0 mg, 102 µmol) in CH₂Cl₂ (20 mL) was added Grubbs’ 2nd generation catalyst (8.69 mg, 10.2 µmol). The solution was subsequently degassed and refluxed at 40 °C for 18 h under an Ar atmosphere, after which the solvent was removed under reduced pressure. The crude product was purified by preparative HPLC (40–60%B) to yield the title compound as an off-white amorphous solid (8.50 mg, 18.4 µmol, 18%).

R₁ = 0.11 (50% EtOAc in petroleum ether 40–60°, TEA-deactivated SiO₂).

α₀/β = –52.6 (c = 0.27 in CHCl₃).

IR: λmax = 2928 (s, C-H), 2853 (m, C-H), 1731 (s, C=O), 1622 (m, C=O), 1509 (m, C=O).

91% HRMS (ESI+): m/z found [M+H]+ 624.2523, C₃₈H₄₅O₂N₄S₂ required 624.2527.

5.2.3.4. Macrocycle (13).
5.2.4. Macrocycles from structural class Mac 2

5.2.4.1. Ester (38).

A solution of 3 (100 mg, 248 μmol), 4-pentynoic acid (24.3 mg, 248 μmol), EDCI (143 mg, 744 μmol) and DMAP (121 mg, 992 μmol) in CH₂Cl₂ (2 mL) was stirred at rt for 16 h. The solution was diluted with EtOAc (30 mL), washed successively with H₂O (2 × 20 mL), brine (20 mL) and dried (MgSO₄). The solution was filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography on silica, eluting with 5% MeOH in EtOAc with 1% TEA to yield the title compound as a colourless oil (67.9 mg, 141 μmol, 57%).

Rᵣ = 0.13 (5% methanol and 1% TEA in EtOAc).

δᵣ = δᵣ (CHA).

IR: νmax = 2925 (s, C–H), 1729 (m, C = O), 1509 (m, C = C).

1H NMR (400 MHz, CDCl₃): δH = 8.73 (1H, d, J = 4.4 Hz, H5), 8.01 (1H, d, J = 9.2 Hz, H3), 7.54 (1H, d, J = 4.4 Hz, H6), 7.35 (1H, dd, J = 9.2, 2.7 Hz, H2), 7.25 (1H, d, J = 2.4 Hz, H9), 5.63 (1H, br s, H10), 4.23 (2H, t, J = 7.2 Hz, H22), 3.92 (3H, s, H20), 3.57–3.46 (1H, m, H15a), 2.71 (2H, t, J = 7.2 Hz, H21), 2.58–2.41 (7H, m, H16b, H19, H24, H25), 1.99 (1H, t, J = 2.4 Hz, H27), 1.85–1.68 (4H, m, H12a, H13, H14a, H17), 1.64–1.47 (4H, m, H12b, H14b, H18).

13C NMR (101 MHz, CDCl₃): δC = 171.5 (C23), 157.8 (C1), 147.6 (C5), 147.1, 144.3 (sp²-C), 131.7 (C3), 126.6 (sp²-C), 121.6 (C2), 118.4 (C6), 101.2 (C9), 82.3 (C26), 71.8 (C10), 69.1 (C27), 63.5 (C22), 59.8 (C11), 58.2 (C16), 55.8 (C20), 43.2 (C15), 34.6 (C17), 34.5 (C18), 33.2 (C19/C24/C25), 30.5 (C21), 30.3 (C19/C24/C25), 27.9 (C12), 25.6 (C13), 21.5 (C14), 14.4 (C19/C24/C25).

HRMS (ESI⁺): m/z found [M+H⁺] 483.2309, C₂₇H₃₅O₄N₅S required 483.2312.

Modified from a literature procedure.55

5.2.4.3. Ester (41).

A solution of 39 (60.0 mg, 124 μmol), 27 (20.78 mg, 124 μmol) and DMAP (1.51 mg, 12.4 μmol) in CH₂Cl₂ (0.5 mL) was cooled to 0 °C, after which a solution of DCC (28.1 mg, 136 μmol) in CH₂Cl₂ (0.5 mL) was added. The solution was stirred at rt for 25 h. The reaction mixture was diluted with EtOAc (10 mL) and washed successively with H₂O (10 mL), saturated aqueous NaHCO₃ solution (10 mL), H₂O (10 mL), brine (10 mL) and dried (Na₂SO₄). The solution was filtered and the solvent removed under reduced pressure. The crude product was purified by flash column chromatography on silica, eluting with a gradient from 0% to 8% MeOH in EtOAc with 1% TEA to yield the title compound required 562.2478, C₃₀H₃₆O₄N₅S required 562.2483.

Modified from a literature procedure.55

5.2.4.2. Ester (39).

A solution of 33 (500 mg, 1.24 mmol), 3 (220 mg, 1.24 mmol), EDCI (713 mg, 3.72 mmol) and DMAP (606 mg, 4.96 mmol) in CH₂Cl₂ (10 mL) was stirred at rt for 23 h. The solution was diluted with EtOAc (30 mL), washed successively with H₂O (2 × 20 mL), brine (20 mL) and dried (MgSO₄). The solution was filtered and the solvent removed under reduced pressure. The crude product was then purified by preparative HPLC (30–65 B) to yield the title compound as an off-white oil (23.6 mg, 42.0 μmol, 3%).

Rᵣ = 0.11 (10% methanol and 1% TEA in EtOAc).

δᵣ = δᵣ (CHA).

IR: νmax = 3146 (br, O–H), 2931 (m, C–H), 2096 (s, –N₃), 1718 (s, C=O), 1621 (m, C=O), 1591 (m, C=C), 1509 (m, C=C).

1H NMR (500 MHz, d₄-MeOH): δH = 6.86 (1H, d, J = 4.6 Hz, H5), 7.96–7.94 (2H, m, ArH), 7.91 (1H, dt, J = 7.9, 1.5 Hz, H29), 7.71 (1H, d, J = 4.6 Hz, H6), 7.58 (1H, d, J = 7.6 Hz, H27), 7.48 (1H, t, J = 7.6 Hz, H28), 7.43–7.41 (2H, m, ArH), 5.73 (1H, s, H10), 4.43 (2H, s, H30), 4.40 (2H, t, J = 6.4 Hz, H22), 3.98 (3H, s, H20), 3.89–3.83 (1H, m, H15a), 3.35–3.26 (2H, m, H11, H16a), 2.91–2.85 (1H, m, H15b), 2.82 (2H, t, J = 6.7 Hz, H21), 2.67–2.62 (1H, m, H16b), 2.55 (2H, t, J = 7.3 Hz, H19), 2.03–1.85 (4H, m, H12a, H13, H14a, H17), 1.67–1.39 (4H, m, H12b, H14b, H18).

13C NMR (126 MHz, d₄-MeOH): δC = 167.3 (C23), 159.9 (C1), 148.2 (C5), 149.3, 144.8, 138.0 (sp²-C), 134.1 (C27), 131.8, 131.5, 130.3 (sp²-C), 130.2 (C29), 130.1 (C28), 127.9, 123.4 (sp²-C), 120.3 (C6), 102.5 (C9), 70.8 (C10), 65.4 (C22), 61.6 (C11), 58.4 (C16), 56.7 (C20), 55.0 (C30), 44.6 (C15), 35.1 (C18), 35.0 (C13/17), 31.3 (C21), 30.7 (C19), 27.5 (C14), 26.6 (C13/C17), 20.7 (C12).

HRMS (ESI⁺): m/z found [M+H⁺] 562.2478, C₃₀H₃₆O₄N₅S required 562.2483.

Modified from a literature procedure.55

5.2.4.1. Ester (38).
1H NMR (500 MHz, d$_6$-MeOH): $\delta_H = 8.69$ (1H, $J = 4.7$ Hz, H5), 8.02 (1H, $d, J = 9.2$ Hz, H3), 7.61 (1H, $d, J = 4.7$ Hz, H6), 7.59 (1H, $d, J = 2.9$ Hz, H9), 7.51 (1H, $dd, J = 9.2, 2.6$ Hz, H2), 7.47 (1H, $d, J = 3.4$ Hz, H30), 6.79 (1H, $d, J = 4.4$ Hz, H10) 6.69 (1H, $d, J = 3.7$ Hz, H31), 4.50 (2H, s, H33), 4.21 (2H, $dd, J = 7.1, 2.1$ Hz, H22), 4.05 (3H, s, H20), 3.60–3.56 (1H, m, H11), 3.40–3.34 (1H, m, H15a), 3.24–3.19 (1H, m, H16a), 2.88–2.81 (1H, m, H15b), 2.72 (2H, $t, J = 7.6$ Hz, H21), 2.60–2.56 (1H, m, H16b), 2.56 (2H, $t, J = 7.6$ Hz, H19), 2.52–2.49 (2H, m, H24), 2.45–2.41 (2H, m, H25), 2.26 (1H, $t, J = 2.6$ Hz, H27), 2.09–1.84 (5H, m, H12, H13, H14a, H17), 1.73–1.61 (3H, m, H14b, H18).

13C NMR (126 MHz, d$_6$-DMSO): $\delta_C = 173.3$ (C23/C28), 157.7, 157.3, 153.2 (C1, C29, C32), 148.0 (C5), 1463.3 (sp^2-C), 1444.4 (sp^2-C), 131.8 (C31), 127.3 (sp^2-C), 123.1 (C27), 122.0 (C2), 121.0 (C31), 119.3 (C6), 112.6 (C30), 102.6 (C9), 74.3 (C10), 65.5 (C22), 60.0 (C11), 57.6 (C16), 56.0 (C20), 46.1 (C28), 42.1 (C15), 35.2 (C18), 34.9 (C13/C17), 33.6 (C24/C25), 30.7 (C19), 30.2 (C21), 28.1 (C14), 24.5, 24.5 (C12, C13/C17), 21.2 (C24/C25).

HRMS (ESI+): m/z found [M+H]$^+$ 632.2520, C$_{33}$H$_{38}$O$_6$N$_5$S$_2$ required 632.2537.

Modified from a literature procedure.

5.2.4.5. Macrocycle (15).

41 (20 mg, 31.7 μmol) was dissolved in dry THF (30 mL) and DIPEA (167.6 μL, 95.7 μmol) was added. After bubbling argon through the solution for 20 min, Cul (19.0 mg, 99.8 μmol) was added and the mixture was refluxed for 46 h until HPLC indicated complete conversion of the starting material. Subsequently, the solvent was removed under reduced pressure and the residue was dissolved in CH$_2$Cl$_2$/MeOH/TEA 10:1:0.1 and filtered through a pad of SiO$_2$. The crude product was purified by preparative HPLC (20–70 B) to yield the title compound as an pale brown amorphous solid (2.2 mg, 2.58 μmol, 10%).

HPLC $t_r = 8.68$ min (20–70 B).

40 (21.3 mg, 24.9 μmol) was dissolved in dry THF (30 mL) and DIPEA (13.0 μL, 74.7 μmol) was added. After bubbling argon through the solution for 20 min, Cul (19.0 mg, 99.8 μmol) was added and the mixture was refluxed for 46 h until HPLC indicated complete conversion of the starting material. Subsequently, the solvent was removed under reduced pressure and the residue was dissolved in CH$_2$Cl$_2$/MeOH/TEA 10:1:0.1 and filtered through a pad of SiO$_2$. The crude product was purified by preparative HPLC (20–70 B) to yield the title compound as an pale brown amorphous solid (2.2 mg, 2.58 μmol, 10%).

IR: $\nu \text{max} = 2926$ (m, C–H), 2857 (m, C–H), 1720 (s, C=O), 1647 (m, C=C), 1621 (m, C=C), 1510 (s, C=C).

1H NMR (500 MHz, d$_6$-DMSO): $\delta_H = 8.85$ (1H, $d, J = 4.3$ Hz, H5), 8.68 (1H, br s, ArH), 8.22 (1H, br s, ArH), 8.03 (1H, $d, J = 9.5$ Hz, H3), 8.01 (1H, $d, J = 7.9$ Hz, ArH), 7.85* (1H, $d, J = 7.6$ Hz, ArH), 7.53 (2H, $d, J = 8.5$ Hz, ArH), 7.51 (1H, $dd, J = 9.2, 2.8$ Hz, H2), 7.27* (2H, $d, J = 2.8$ Hz, H9), 7.22–7.18 (2H, m, ArH), 7.05 (1H, br s, ArH), 6.55 (1H, br s, H10), 5.72 (2H, br s, H30), 5.02 (1H, $d, J = 15.6$ Hz, H33a/H35a/H40a), 4.66 (1H, $d, J = 16.2$ Hz, H33b/H35b/H40b), 4.54–4.49 (1H, m, H22a), 4.45–4.39 (1H, m, H22b), 4.34 (1H, $d, J = 16.2$ Hz, H33a/H35a/H40a), 4.26 (1H, $d, J = 15.6$ Hz, H33b/H35b/H40b), 4.22 (1H, $d, J = 16.5$ Hz, H33b/H35b/H40b), 3.92 (1H, $d, J = 16.2$ Hz, H33b/H35b/H40b), 3.91 (3H, s, H20), 3.58–3.53* (1H, m, H11), 3.31–3.00* (1H, m, H15a/H16a), 2.97–2.74 (5H, m, H15a/H16a, H15b/H16b, H21), 2.43–2.32 (2H, m, H19), 1.67 (1H, br s, H17), 1.29–1.01 (5H, m, H12, 13, 14), 0.75 (1H, br s, H18), 0.50 (1H, br s, H24)*.

* = HSQC indicates possible presence of rotamers.

** = obscured by H$_2$O peak, assigned from HSQC.
A solution of 2 (700 mg, 2.16 mmol) and undecylenic acid (398 mg, 2.16 mmol) in DMF (10 mL) was cooled to 0 °C, after which HATU (819 mg, 2.16 mmol), DIPEA (826 μL, 4.75 mmol) and DMAP (26.3 mg, 2.16 mmol) were added. The solution was allowed to warm to rt and stirred for 40 h. The reaction mixture was quenched with a saturated aqueous LiCl solution (30 mL) and extracted with EtOAc (3 × 30 mL). The organic layers were combined, washed successively with saturated aqueous NaHCO3 solution (3 × 30 mL), saturated aqueous LiCl solution (3 × 30 mL), brine (30 mL) and dried (MgSO4). The solution was filtered and solvent removed under reduced pressure. The crude product was purified by flash column chromatography on TEA-deactivated silica, eluting with a gradient from 0% to 2% MeOH in CH2Cl2 to yield the title compound as a yellow oil (570 mg, 1.16 mmol, 54%).

IR: \(\lambda_{\text{max}} = 2926 \, \text{(m, C=H)}, 2854 \, \text{(m, C=H)}, 1689 \, \text{(m, C=O)}, 1637 \, \text{(s, C=C)}, 1617 \, \text{(s, C=C)}, 1504 \, \text{(m, C=C)} \).

HRMS (ESI+): m/z found [M+H]+ 491.3277, C31H43O3N2 required 491.3268.

5.2.5.2. Amidé (43).

A solution of 2 (700 mg, 2.16 mmol) and 8-nonenoic acid (337 mg, 2.16 mmol) in DMF (10 mL) was cooled to 0 °C, after which HATU (819 mg, 2.16 mmol), DIPEA (826 μL, 4.75 mmol) and DMAP (26.3 mg, 2.16 mmol) were added. The solution was allowed to warm to rt and stirred for 40 h. The reaction mixture was quenched with a saturated aqueous LiCl solution (30 mL) and extracted with EtOAc (3 × 30 mL). The organic layers were combined, washed successively with saturated aqueous NaHCO3 solution (2 × 30 mL), saturated aqueous LiCl solution (3 × 30 mL), brine (30 mL) and dried (MgSO4). The solution was filtered and solvent removed under reduced pressure. The crude product was purified by flash column chromatography on TEA-deactivated silica, eluting with a gradient from 0% to 2% MeOH in CH2Cl2 to yield the title compound as a yellow oil (570 mg, 1.16 mmol, 54%).

IR: \(\lambda_{\text{max}} = 2926 \, \text{(m, C=H)}, 2854 \, \text{(m, C=H)}, 1689 \, \text{(m, C=O)}, 1637 \, \text{(s, C=C)}, 1617 \, \text{(s, C=C)}, 1504 \, \text{(m, C=C)} \).

HRMS (ESI+): m/z found [M+H]+ 491.3277, C31H43O3N2 required 491.3268.
5.2.5.3. Macrocycle (16).

To a stirred solution of 42 (100 mg, 216 μmol) in toluene (30 mL) was added Grubbs’ 2nd generation catalyst (18.4 mg, 20.4 μmol). The solution was subsequently degassed and refluxed at 120 °C for 19 h under an Ar atmosphere, after which an additional 0.1 eq. of Grubbs’ 2nd generation catalyst was added. The reaction was refluxed for a further 28 h, after which the solvent was removed under reduced pressure. The crude product was purified by preparative HPLC (40–70 B) to yield the title compound as an amorphous light brown solid (5.20 mg, 12.0 μmol, 6%).

HPLC tR = 11.16 min (20–70 B).

δD = +58.0 (c = 0.05 in CHCl3).

IR: λmax = 2927 (s, C–H), 2857 (m, C–H), 1685 (s, C=C), 1506 (m, C=C).

1H NMR (500 MHz, CDCl3): δH = 8.90 (1H, br s, H5), 8.09 (1H, d, J = 8.9 Hz, H3), 7.88 (1H, br s, H6), 7.63 (1H, br s, H9), 7.45 (1H, d, J = 8.9 Hz, H2), 5.54–5.51 (2H, m, H18, H19), 4.89 (1H, d, J = 12.3 Hz, H1a), 3.99–3.95 (1H, m, H16a), 3.97 (3H, s, H27), 3.31 (1H, d, J = 10.7 Hz, H16b), 3.13–2.97 (2H, m, H25), 2.76 (1H, t, J = 12.0 Hz, H11a), 2.57–2.52 (1H, m, H15b), 2.48–2.46 (1H, m, H17), 2.27–2.17 (2H, m, H11b, H20a), 2.10–2.02 (1H, m, H20b), 1.93–1.88 (1H, m, H12a), 1.82–1.77 (2H, m, H13, H14a), 1.75–1.13 (10H, m, H12b, H14b, H21, H22, H23, H24).

13C NMR (126 MHz, d6-DMSO): δC = 204.7 (C10), 171.3 (C26), 159.0 (C1), 148.0 (C5), 145.1 (sp2-C), 141.0 (sp2-C), 131.5 (C18/C19), 131.1 (C3), 130.1 (C18/C19), 124.9 (sp2-C), 122.6 (C2), 121.2 (C6), 103.8 (C9), 55.9 (C27), 55.0 (C16), 42.4 (C15), 41.2 (C17), 39.1 (C25), 37.9 (C13), 30.0, 28.5, 27.2, 26.9, 25.0, 24.9, 24.3, 22.8 (sp3-C).

HRMS (ESI+): m/z found [M+H]+ 435.2639, C29H35O3N2 required 435.2642.

5.2.5.4. Macrocycle (17).

To a stirred solution of 43 (100 mg, 204 μmol) in toluene (40 mL) was added Grubbs’ 2nd generation catalyst (17.4 mg, 20.4 μmol). The solution was subsequently degassed and refluxed at 80 °C for 20 h under an Ar atmosphere, after which an additional 0.1 eq. of Grubbs’ 2nd generation catalyst was added. The reaction was refluxed for a further 18 h, after which the solvent was removed under reduced pressure. The crude product was purified by preparative HPLC (40–60 B) to yield the title compound as an amorphous brown solid (2.80 mg, 6.05 μmol, 3%).

HPLC tR = 13.47 min (20–70 B).

δD = +17.1 (c = 0.07 in CHCl3).

IR: λmax = 2924 (s, C–H), 2854 (m, C–H), 1680 (s, C=C), 1505 (m, C=C).

1H NMR (500 MHz, d4-DMSO): δH = 8.88 (1H, d, J = 4.4 Hz, H5), 8.03 (1H, d, J = 9.1 Hz, H3), 7.81 (1H, d, J = 4.4 Hz, H6), 7.70 (1H, d, J = 2.9 Hz, H9), 7.49 (1H, dd, J = 9.1, 2.6 Hz, H2), 5.54–5.41 (2H, m, H1, H18), 3.91 (3H, s, H29), 3.80–3.67 (1H, m, H15a), 3.55–3.50 (1H, m, H16a), 3.29–3.26 (1H, m, H16b), 3.21–3.14 (2H, m, H11a, H11b), 3.08–3.02 (1H, m, H11b), 2.78–2.73 (1H, m, H17), 2.39–2.32 (1H, m, H20a), 2.23–2.06 (2H, m, H27), 2.12–1.90 (1H, m, H20b), 1.80–1.62 (3H, m, H12, H13), 1.59–1.14 (14H, m, H14, H21, H22, H23, H24, H25).

13C NMR (126 MHz, d6-DMSO): δC = 204.3 (C10), 171.4 (C28), 158.6 (C1), 147.7 (C5), 144.7 (sp2-C), 140.7 (sp2-C), 132.7 (C18/C19), 131.1 (C3), 127.8 (C18/C19), 124.5 (sp2-C), 122.2 (C2), 120.8 (C6), 103.4 (C9), 55.6 (C29), 36.8 (C17), 32.6 (C27), 49.6 (C16), 39.5 (C11), 36.7 (C13), 32.7 (C27), 27.0, 26.9, 26.7, 25.7 (sp3-C), 25.4 (C20), 25.3, 25.0, 24.8, 23.5 (sp3-C).

HRMS (ESI+): m/z found [M+H]+ 463.2957 C29H39O3N2 required 463.2955.

5.3. Principal moments of inertia Computational procedure

Using the Molecular Operating Environment (MOE) software, a conformational search and energy minimisation was carried out on the library. Specifically, the Merck molecular force field 94X (MMFF94X) with the generalised Born solvation model was used. The lowest-energy conformers were selected and used in the subsequent analyses. Table 1 highlights the conformational search settings used.

Table 1: Conformational search settings.

<table>
<thead>
<tr>
<th>Method</th>
<th>LowModeMD</th>
<th>RMS Gradient</th>
<th>Iteration Limit</th>
<th>MM Iteration Limit</th>
<th>RMSD Limit</th>
<th>Energy Window</th>
<th>Conformation Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejection Limit</td>
<td>100</td>
<td>0.005</td>
<td>10,000</td>
<td>500</td>
<td>0.15</td>
<td>7</td>
<td>100</td>
</tr>
</tbody>
</table>

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no [279337/DOS]. In addition, the group research was supported by grants from the Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council, Wellcome Trust and AstraZeneca.

Data accessibility: All data supporting this study are provided as Supplementary data accompanying this paper.

A. Supplementary data

Supplementary data (copies of 1H NMR and 13C NMR spectra) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2017.02.060.

David Spring is currently a Professor at the University of Cambridge within the Chemistry Department. He received his DPhil (1998) from Oxford University under Sir Jack Baldwin. He then worked as a Wellcome Trust Postdoctoral Fellow at Harvard University with Stuart Schreiber (1999–2001), after which he joined the faculty at the University of Cambridge. His research programme is focused on synthetic chemistry and chemical biology.

Joe Ciardiello grew up in Warwick, UK. He obtained his MSc and BA (Hons) in Natural Sciences in 2012 from the University of Cambridge where he also undertook his PhD under the supervision of Professor David Spring, working on the development of strategies for diversity oriented synthesis. Joe received his PhD in 2016 and is currently a postdoctoral research assistant for Professor David Spring.

Dr. Warren Galloway is currently a postdoctoral research assistant for Prof. David Spring and a Fellow of Pembroke College. He attended the University of Cambridge for his undergraduate chemistry degree and stayed at Cambridge for his PhD studies under the supervision of Prof. David Spring, where he worked on the development of strategies for diversity-oriented synthesis. Dr Galloway’s current research involves the design and synthesis of small-molecule modulators of biological processes.

Hannah Stewart graduated with an MSc and BA (Hons) in Natural Sciences from the University of Cambridge. In 2014 she started postgraduate studies, remaining at the University of Cambridge and is undertaking a PhD project under the supervision of Professor David Spring, involving the identification and development of strategies for diversity oriented synthesis.

Hannah Sore worked as a medicinal chemist at Millennium Pharmaceuticals and Astex Therapeutics where she developed small molecule inhibitors against inflammation and oncology biological targets. She began her PhD at the University of Cambridge under the supervision of Professor David Spring and afterwards took up a position as healthcare consultant at Frost & Sullivan. Currently she is a postdoctoral research assistant with Professor Spring focused on the commercialisation of research developed within the university.