Engineering of new prodigiosin-based biosensors of *Serratia* for facile detection of short-chain N-acyl homoserine lactone quorum-sensing molecules

Simon Poulter,1 Timothy M. Carlton,1 Xianbin Su,2 David R. Spring3 and George P. C. Salmond1,4

Departments of 1Biochemistry and 2Chemistry, University of Cambridge, Cambridge, UK.

Summary

Many Gram-negative bacteria use quorum sensing (QS) to regulate expression of multiple genes, by utilizing small diffusible signalling molecules called N-acyl homoserine lactones (acyl-HSLs). *Serratia* sp. ATCC 39006 produces the red pigment prodigiosin under QS control, in response to the short-chain signal C4-HSL. In this study, we have demonstrated that an acyl-HSL-deficient mutant can be used as a visual biosensor to detect short-chain acyl-HSLs. We have quantified the acyl-HSL sensitivity spectrum of the *Serratia* 39006 prodigiosin QS system, and have demonstrated a strong specificity for the natural ligand C4-HSL. Mutations in the pigX and pigZ genes in *Serratia* 39006 resulted in an overproduction of prodigiosin, caused by increased transcription of the prodigiosin biosynthetic operon. A new biosensor (SP19) with enhanced prodigiosin production was created by addition of pigX and pigZ mutations to the existing biosensor. We have demonstrated that SP19 is superior to biosensor strains CV026 and *Agrobacterium* NTL4 (pZLR4) for the detection of short-chain acyl-HSLs present in spent culture supernatants. Researchers working with QS bacteria that produce short-chain acyl-HSLs can use strain SP19 as a simple visual acyl-HSL biosensor with no requirement for expensive detection equipment.

Introduction

Many Gram-negative bacterial species regulate gene expression in response to population cell density, by utilizing intercellular signalling molecules called N-acyl homoserine lactones (acyl-HSLs) in a cell-to-cell communication mechanism termed quorum sensing (QS) (Whitehead et al., 2001). Typical Gram-negative QS systems consist of a LuxI family acyl-HSL synthase and a partner LuxR family transcriptional regulator, whose activity is modulated by binding to the acyl-HSL ligand. Acyl-HSLs produced by LuxI proteins consist of an invariant lactone ring coupled to an acyl chain, which ranges in length in different bacterial species from four to 16 carbons. The oxidation status of the acyl chain C3 carbon is also variable, sometimes containing a carbonyl (3-oxo) or hydroxyl group (Whitehead et al., 2001).

The development of several bacterial biosensor strains for the detection of acyl-HSL molecules has aided the identification and analysis of bacterial species that participate in QS (Steindler and Venturi, 2007). Two of the most commonly used acyl-HSL biosensors are Chromobacterium violaceum CV026, and the broad range *Agrobacterium* tumefaciens NTL4 (pZLR4). CV026 produces the purple pigment violacein in response to detected acyl-HSLs, making it a simple visual assay that requires no expensive photon camera or luminometer equipment (McClean et al., 1997; Steindler and Venturi, 2007). The *A. tumefaciens* strain NTL4 (pZLR4) is a β-galactosidase-based biosensor with a very high sensitivity level, and has the broadest acyl-HSL specificity of any biosensor, especially for longer-chain acyl-HSLs ranging from C₈ to C₁₂ (Shaw et al., 1997; Cha et al., 1998; Farrand et al., 2002; Zhu et al., 2003). Importantly however, both the CV026 and NTL4 (pZLR4) biosensors respond poorly to the short-chain C4-HSL and 3-oxo-C4-HSL, relative to their cognate acyl-HSLs, thus limiting the utility of these strains for detection of short-chain acyl-HSL signals produced by several important QS microorganisms, e.g. various *Aeromonas*, *Pseudomonas* and *Serratia* species.

Quorum sensing regulates multiple phenotypes in the Gram-negative bacterium *Serratia* sp. ATCC 39006, including the biosynthesis of a bright red tripyrrole pigment, prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosin) (Harris et al., 2004). The QS circuit in *Serratia* ATCC 39006 consists of the SmaI protein, which synthesizes C4-HSL, and the transcriptional repressor SmaR. The SmaR protein mediates QS control of the prodigiosin biosynthetic operon (pigA–O) via a ‘derepression’ mechanism, by inhibiting transcription in the
absence of the C4-HSL ligand (i.e. at low cell density), an effect which is relieved by the interaction of SmaR with C4-HSL as cell-density increases (Thomson et al., 2000).

In addition to regulation by QS, recent studies have uncovered a complex regulatory network which integrates a number of environmental cues into control of prodigiosin production (Harris et al., 2004; Fineran et al., 2005a,b). Two such regulators are PigX (a GGDEF/EAL domain protein) and PigZ (a TetR family repressor) (Fineran et al., 2007; Gristwood et al., 2008). Mutation of these prodigiosin regulators causes an increase in transcription of the pigA–O biosynthetic operon, resulting in elevated prodigiosin production and a characteristic ‘hyper-pigmented’ phenotype.

The aim of this study was to utilize current knowledge of prodigiosin regulation in Serratia ATCC 39006 to construct a simple visual biosensor which is specific for short-chain acyl-HSL signals. This was achieved by significantly improving the sensitivity of an existing Serratia 39006 biosensor strain by the addition of two mutations (pigX and pigZ) that cause hyperproduction of prodigiosin, resulting in a new biosensor, SP19.

Results and discussion

Sensitivity of the standard LIS biosensor to acyl-HSLs

A previous study isolated a smal mutant of Serratia 39006, called LIS (smal::miniTn5 Sm/Sp). LIS produces no acyl-HSL molecule, and therefore no prodigiosin. Addition of the cognate C4-HSL signal to strain LIS restored wild type levels of prodigiosin production, suggesting its potential use as a biosensor for short-chain acyl-HSLs (Thomson et al., 2000). In this study, the sensitivity of the LIS biosensor to acyl-HSLs was tested qualitatively on an agar plate assay, using chemically synthesized acyl-HSL molecules with straight-chain and 3-oxo acyl chains that ranged in length from C4 to C12 (Fig. 1A). At the acyl-HSL concentrations tested, LIS produced prodigiosin in response to C4-HSL and C6-HSL, with a weaker response to 3-oxo-C4-HSL and C8-HSL.

To assess the sensitivity spectrum of strain LIS in a quantitative fashion, prodigiosin production by LIS was measured in liquid cultures, in response to synthetic acyl-HSLs (Table 1). The natural Serratia 39006 ligand, C4-HSL, was the strongest agonist in this assay, causing half-maximal prodigiosin production at a concentration of...
70 nM. Response to straight-chain acyl-HSL ligands dropped by an order of magnitude with each addition of a further two carbon atoms onto the acyl-chain of the signalling molecule, reflecting the high degree of specificity of the Smr transcriptional regulator for its cognate ligand (Table 1). In contrast to C4-HSL, the 3-oxo derivative 3-oxo-C4-HSL was 91-fold less active, requiring 6.4 μM for half-maximal pigment production. This result reflects a general trend in which the *Serratia* 39006 QS system responds much more strongly to straight-chain acyl-HSLs than to 3-oxo derivatives of the same acyl-chain length. The transcription of the *pigA* gene (representative of transcription of the entire prodigiosin operon) in response to each acyl-HSL very closely matched the production of prodigiosin in each case, confirming that derepression of the *pigA* promoter in response to the applied acyl-HSLs was responsible for the increase in prodigiosin production (Table 1).

Table 1. Concentrations of acyl-HSLs required to induce half-maximal prodigiosin production and prodigiosin biosynthetic operon transcription in biosensor strain LIS (smr).

<table>
<thead>
<tr>
<th>Acyl-HSL</th>
<th>Prodigiosin</th>
<th>pigA expression</th>
<th>Relative [AHL]50</th>
<th>pigA expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4-HSL</td>
<td>70</td>
<td>70</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C6-HSL</td>
<td>870</td>
<td>920</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>C8-HSL</td>
<td>7000</td>
<td>6000</td>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td>C10-HSL</td>
<td>70000</td>
<td>70000</td>
<td>1086</td>
<td>1000</td>
</tr>
<tr>
<td>C12-HSL</td>
<td>> 100000</td>
<td>> 100000</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>30-C4-HSL</td>
<td>6400</td>
<td>4000</td>
<td>91</td>
<td>57</td>
</tr>
<tr>
<td>30-C6-HSL</td>
<td>3000</td>
<td>2000</td>
<td>429</td>
<td>286</td>
</tr>
<tr>
<td>30-C8-HSL</td>
<td>7000</td>
<td>70000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>30-C10-HSL</td>
<td>> 100000</td>
<td>> 100000</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>30-C12-HSL</td>
<td>> 100000</td>
<td>> 100000</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

a. [AHL]50 is the concentration of each acyl-HSL required to elicit half-maximal prodigiosin production or β-galactosidase activity from a pigA-lacZ transcriptional fusion. Samples were taken from early stationary phase (10 h) cultures of LIS (prodigiosin) or MCPI-1 (*pigA* expression) grown in LB, in the presence of acyl-HSLs (0, 10, 100, 1000 and 100 000 nM) added at the start of growth. β-Galactosidase enzyme activity was assayed using o-nitrophenol-β-galactoside (ONPG) as a substrate as described previously (Miller, 1972). β-Galactosidase activity was expressed as the initial rate of reaction per ml of sample per unit OD600 of bacterial culture (ΔA600 min⁻¹ ml⁻¹ OD600⁻¹). Data shown are the means of three independent experiments.

b. Relative [AHL]50 corresponds to the ratio of concentration of each acyl-HSL required to elicit half-maximal prodigiosin production, versus the cognate C4-HSL ligand.

Construction of new biosensor strains

The hyperpigmented phenotype caused by the *pigX* and *pigZ* mutations was exploited to improve the LIS acyl-HSL biosensor strain. The *Serratia* 39006 transducing phage φOT8 (Evans et al., 2009) was used to create two double mutant biosensors, SP16 (*smr*, *pigZ*) and SP17 (*smr*, *pigX*), which were then combined to create the triple mutant biosensor strain SP19 (*smr*, *pigX*, *pigZ*). Due to the *smal* mutation, no detectable prodigiosin production was observed in the three new biosensor strains (Fig. 2). This indicates that, in spite of the presence of mutations that derange *pigA* expression, prodigiosin production in these *smal* biosensor mutants remained under tight QS control. Addition of 1 μM C4-HSL restored prodigiosin production in these strains to the level of their hyperpigmented progenitor mutant, indicating their potential as improved biosensors for short-chain acyl-HSLs (Fig. 2).

Use of strain SP19 versus existing acyl-HSL biosensors

A plate bioassay was performed to test the utility of the newly constructed *Serratia* strains as simple visual biosensors for acyl-HSLs (Fig. 1A–C). As expected from liquid prodigiosin assays, strain SP19 produced more prodigiosin than LIS or SP16 in response to short-chain acyl-HSLs (Fig. 1C). Increased prodigiosin production by the SP19 biosensor strain also enabled detection of 3-oxo-C6-HSL, 3-oxo-C8-HSL and C10-HSL, all of which were
undetectable using the original LIS biosensor at the acyl-HSL concentrations tested.

The response of SP19 to non-cognate acyl-HSLs was then quantified in liquid culture, and compared with the progenitor strain LIS. Although the absolute quantity of prodigiosin produced by SP19 was higher than LIS in each case, the concentration of each acyl-HSL required to induce half-maximal prodigiosin production remained identical (data not shown), indicating that addition of pigX and pigZ mutations did not alter the acyl-HSL specificity of the biosensor.

SP19 was then compared with two other acyl-HSL biosensors, C. violaceum CV026 (Fig. 1D) and A. tumefaciens NTL4 (pZLR4) (Fig. 1E). Both the CV026 and NTL4 (pZLR4) biosensors were able to respond with higher sensitivity than SP19 to acyl-HSL molecules with chain lengths between C6 and C8, and the longer chained C10 and C12 acyl-HSLs elicited a strong response from NTL4 (pZLR4). However, strain SP19 gave the strongest signal in response to the short-chain C4-HSL and 3-oxo-C4-HSL molecules, to which the CV026 and NTL4 (pZLR4) respond poorly.

Utility of SP19 as a biosensor using spent supernatant samples

The most appropriate use of the CV026 biosensor is for the detection of acyl-HSLs in spent culture supernatants (McCLean et al., 1997). To prove that strain SP19 could also detect these physiologically relevant concentrations of acyl-HSLs, filter-sterilized supernatants extracted from various QS species were added to holes punched in an SP19 bioassay plate (Fig. 3A). SP19 responded strongly to supernatant samples from the C4-HSL-producing species Serratia ATCC 39006 (Thomson et al., 2000) and Pseudomonas aeruginosa PA01 (Stover et al., 2000). Strain SP19 also produced a weaker response to supernatants from C. violaceum ATCC 31532 (C6-HSL producer) (McCLean et al., 1997) and Erwinia carotovora ssp. carotovora ATCC 39048 (3-oxo-C6-HSL producer) (McGowan et al., 1996), but was unable to respond to supernatant from E. carotovora SCC3193, which synthesizes 3-oxo-C8-HSL (Koiv and Mae, 2001).

Biosensor strain SP19 can also be used to detect acyl-HSL production throughout growth in culture. Samples from a culture of wild-type Serratia 39006 were taken at hourly intervals throughout growth and the cell-free supernatant was applied to the SP19 biosensor, allowing semi-quantification of the temporal dynamics of acyl-HSL production by providing a 'snap-shot' of acyl-HSL production at each time point (Fig. 3B and C). Strain SP19 is also suitable for large-scale screens for C4-HSL production, or for the identification of acyl-HSL mutants following mutagenesis screens, by patching or spotting colonies or cell suspensions onto the bioassay plate.

Conclusions

Despite the development of various lux- and β-galactosidase-based acyl-HSL biosensor strains with
apparently higher levels of sensitivity, the simple CV026 assay remains extremely popular among QS researchers (Steindler and Venturi, 2007). The popularity of CV026 is due to its low cost, its simplicity and its appealing visual phenotype, characteristics all shared by the SP19 biosensor presented here. However, as shown in this study, the CV026 assay is limited by its relatively weak response to short-chain C4 acyl-HSLs. Therefore, for researchers working with C4-HSL-producing microorganisms such as species of Aeromonas, Pseudomonas and Serratia, strain SP19 can be used as a powerful tool for the facile detection of short-chain acyl-HSL molecules, and can replace CV026 as a simple visual short-chain acyl-HSL biosensor with no requirement for expensive technical detection equipment.

Acknowledgements

The authors thank all members of the Salmond group, Peter Fineran for help with experimental design and for initial proof-
of-principle experiments, Ian Foulds for technical assistance, Neil Williamson for bacterial strains and qPCR primers, Tamzin Gristwood for bacterial strains, and Nabil Wilf for qPCR primers. This work was supported by the BBSRC, UK.

References

Supporting information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Effect of pigX and pigZ mutations on Serratia ATCC 39006 prodigiosin production (A) and pigB gene expression (B). Samples (1 ml) for prodigiosin assays and pigB qRT-PCR analysis were taken from early stationary phase (10 h) cultures of a pigX mutant (CH9), a pigZ mutant (TG39) and a pigX, pigZ double mutant (SP15), grown in LB broth. Prodigiosin was measured as absorbance at 534 nm, as described previously (Fineran et al., 2005b). Quantitative PCR was performed on the pigB gene, as representative of the entire prodigiosin operon, as described previously (Williamson et al., 2008). A 5 µl aliquot of template DNA was used in a 25 µl reaction containing 1× SYBR Green PCR Master Mix (Applied Biosystems) and 10 pmol of primers for pigB (Table S1). PCR amplification was performed using an Applied Biosystems Prism 7300 sequence detection system.
using reaction conditions as described previously (Williamson et al., 2008). Fluorescence data were processed using SDS software (ABI) to produce threshold cycle (Ct) values for each sample. Relative gene expression was obtained using 16S rRNA as the control with mRNA/16S rRNA = 1 in the wild-type control. Data shown are the means ± SD of three independent experiments.

Table S1. Bacterial strains, phages and primers used in this study.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.